III

VLIEGTUIGEN
<table>
<thead>
<tr>
<th>Hoofdstuk</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inleiding</td>
</tr>
<tr>
<td>2</td>
<td>Doel van het vak</td>
</tr>
<tr>
<td>3</td>
<td>De krachten op het vliegtuig</td>
</tr>
<tr>
<td>4</td>
<td>Natuurkundige eigenschappen van de lucht</td>
</tr>
<tr>
<td>5</td>
<td>Aerodynamica</td>
</tr>
<tr>
<td>5.1</td>
<td>De totale druk, statische druk en stuwdruk</td>
</tr>
<tr>
<td>5.2</td>
<td>Definities, veronderstellingen, stromingswetten</td>
</tr>
<tr>
<td>5.3</td>
<td>De energiewet</td>
</tr>
<tr>
<td>5.4</td>
<td>De continuïteitsvergelijking</td>
</tr>
<tr>
<td>5.5</td>
<td>De continuïteitsvergelijking</td>
</tr>
<tr>
<td>5.6</td>
<td>De Wet van Bernoulli</td>
</tr>
<tr>
<td>5.7</td>
<td>De invloed van de vleugelslankheid</td>
</tr>
<tr>
<td>5.8</td>
<td>Profielomstroming</td>
</tr>
<tr>
<td>5.9</td>
<td>De vleugels</td>
</tr>
<tr>
<td>5.10</td>
<td>Vluchtig</td>
</tr>
<tr>
<td>5.11</td>
<td>Vragen</td>
</tr>
<tr>
<td>6</td>
<td>Vliegmechanica</td>
</tr>
<tr>
<td>6.1</td>
<td>Rechtlijnige vluchten</td>
</tr>
<tr>
<td>6.2</td>
<td>Krachten tijdens de lierstart</td>
</tr>
<tr>
<td>6.3</td>
<td>Bochten</td>
</tr>
<tr>
<td>6.4</td>
<td>Stabiliteit</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Wat is stabiliteit</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Statische en dynamische stabiliteit</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Het assemblage</td>
</tr>
<tr>
<td>6.4.4</td>
<td>De inzet van het stabilo</td>
</tr>
<tr>
<td>6.4.5</td>
<td>Het krachtenevenwicht in de horizontale bocht</td>
</tr>
<tr>
<td>6.4.6</td>
<td>De minimum snelheid in de bochtvlucht</td>
</tr>
<tr>
<td>6.4.7</td>
<td>De belastingfactor</td>
</tr>
<tr>
<td>6.4.8</td>
<td>De bijdrage van de vleugel</td>
</tr>
</tbody>
</table>

INHOUD

| Symboolenlijst | Literatuurlijst | Bochten | Krachten tijdens de lierstart | Vragen | Vliegtuig | Vleugels | Profielomstroming | Vluchtig | Vragen | Vliegmechanica | Rechtlijnige vluchten | Krachten tijdens de lierstart | Bochten | Stabiliteit | Wat is stabiliteit | Statische en dynamische stabiliteit | Het assemblage | De inzet van het stabilo | Het krachtenevenwicht in de horizontale bocht | De minimum snelheid in de bochtvlucht | De belastingfactor | De bijdrage van de vleugel |
6.4.4.3. De bijdrage van het stabilo...38
6.4.4.4. Conclusies...38
6.4.5. Richtingsstabiliteit..39
6.4.6. Rolstabiliteit..41
7. Bepalen van het zwaartepunt..42
 7.1. Bepalen van het zwaartepunt zonder inzittende.................................42
 7.2. Bepalen van het zwaartepunt met inzittende.......................................44
8. Vragen..45
<table>
<thead>
<tr>
<th>Symbool</th>
<th>Verklaring</th>
<th>Dimensie</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Versnelling (acceleration)</td>
<td>[m/s²]</td>
</tr>
<tr>
<td>b</td>
<td>Spanwijde</td>
<td>[m]</td>
</tr>
<tr>
<td>cd</td>
<td>Weerstandscœfficiënt</td>
<td>[-]</td>
</tr>
<tr>
<td>cd_i</td>
<td>Geïnduceerde weerstandscœfficiënt</td>
<td>[-]</td>
</tr>
<tr>
<td>c_l</td>
<td>Lifscœfficiënt (draagkrachtscœfficiënt)</td>
<td>[-]</td>
</tr>
<tr>
<td>c_m</td>
<td>Momentscœfficiënt</td>
<td>[-]</td>
</tr>
<tr>
<td>c_m_a</td>
<td>Momentcœfficiënt ficiënom a.c.</td>
<td>[-]</td>
</tr>
<tr>
<td>c_m_0</td>
<td>Nullmomentcœfficiënt</td>
<td>[-]</td>
</tr>
<tr>
<td>f</td>
<td>Frequentie</td>
<td>[Hz], [1/s]</td>
</tr>
<tr>
<td>g</td>
<td>Versnelling van de zwaartekracht = 9,8</td>
<td>[m/s²]</td>
</tr>
<tr>
<td>h</td>
<td>Hoogte</td>
<td>[m]</td>
</tr>
<tr>
<td>l</td>
<td>Lengte</td>
<td>[m]</td>
</tr>
<tr>
<td>m</td>
<td>Massa</td>
<td>[kg]</td>
</tr>
<tr>
<td>n</td>
<td>Belastingfactor</td>
<td>[-]</td>
</tr>
<tr>
<td>p</td>
<td>Druk (pressure)</td>
<td>[Pa], [N/m²]</td>
</tr>
<tr>
<td>q</td>
<td>Stuwdruk</td>
<td>[Pa], [N/m²]</td>
</tr>
<tr>
<td>r</td>
<td>Straal, radiu</td>
<td>[m]</td>
</tr>
<tr>
<td>s</td>
<td>Afgelegde weg</td>
<td>[m]</td>
</tr>
<tr>
<td>t</td>
<td>Tijd</td>
<td>[s]</td>
</tr>
<tr>
<td>v</td>
<td>Snelheid (velocity)</td>
<td>[m/s]</td>
</tr>
<tr>
<td>v_s</td>
<td>Overtreksnelheid (stall-speed)</td>
<td>[m/s]</td>
</tr>
<tr>
<td>v_s</td>
<td>Slipsnelheid</td>
<td>[m/s]</td>
</tr>
<tr>
<td>v_A</td>
<td>Manoevreersnelheid</td>
<td>[m/s]</td>
</tr>
<tr>
<td>v_NAE</td>
<td>Maximale vliegsnelheid (Never Exceed)</td>
<td>[m/s]</td>
</tr>
<tr>
<td>w</td>
<td>Daalsnelheid</td>
<td>[m/s]</td>
</tr>
<tr>
<td>z</td>
<td>Cirkulatiesnelheid</td>
<td>[m/s]</td>
</tr>
<tr>
<td>A</td>
<td>Oppervlak (Area)</td>
<td>[m²]</td>
</tr>
<tr>
<td>C</td>
<td>Koorde (Chord)</td>
<td>[m]</td>
</tr>
<tr>
<td>D</td>
<td>Weerstandskracht (Drag)</td>
<td>[N]</td>
</tr>
<tr>
<td>D_i</td>
<td>Geïnduceerde weerstand</td>
<td>[N]</td>
</tr>
<tr>
<td>F</td>
<td>Kracht (Force)</td>
<td>[N]</td>
</tr>
<tr>
<td>G</td>
<td>Gravitatiekracht (gewichtskracht)</td>
<td>[N]</td>
</tr>
<tr>
<td>I</td>
<td>Elektrische stroomsterkte</td>
<td>[A]</td>
</tr>
<tr>
<td>J</td>
<td>Traagheidsmoment</td>
<td>[J/s²]</td>
</tr>
<tr>
<td>K</td>
<td>Kompensatiefactor</td>
<td>[-]</td>
</tr>
<tr>
<td>L</td>
<td>Liftkracht</td>
<td>[N]</td>
</tr>
<tr>
<td>L</td>
<td>Lengte</td>
<td>[m]</td>
</tr>
<tr>
<td>Symbool</td>
<td>Verklaring</td>
<td>Dimensie</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>M</td>
<td>Moment</td>
<td>[Nm]</td>
</tr>
<tr>
<td>P</td>
<td>Vermogen</td>
<td>[W]</td>
</tr>
<tr>
<td>R</td>
<td>Resulterende kracht</td>
<td>[N]</td>
</tr>
<tr>
<td>R</td>
<td>Gasconstante</td>
<td>[J/(kg.K)]</td>
</tr>
<tr>
<td>T</td>
<td>Temperatuur</td>
<td>[K]</td>
</tr>
<tr>
<td>T</td>
<td>Trekkkracht</td>
<td>[N]</td>
</tr>
<tr>
<td>V</td>
<td>Volume</td>
<td>[m³]</td>
</tr>
<tr>
<td>W</td>
<td>Energie, Arbeid</td>
<td>[J]</td>
</tr>
<tr>
<td>Z</td>
<td>Zwaartepunt</td>
<td>[-]</td>
</tr>
<tr>
<td>α</td>
<td>Invalshoek</td>
<td>[°] of [rad]</td>
</tr>
<tr>
<td>δ</td>
<td>Grenslaagdikte</td>
<td>[m]</td>
</tr>
<tr>
<td>ε</td>
<td>Glijgetal</td>
<td>[-]</td>
</tr>
<tr>
<td>γ</td>
<td>Glijhoek</td>
<td>[°] of [rad]</td>
</tr>
<tr>
<td>η</td>
<td>Dynamische viscositeit</td>
<td>[Pa.s]</td>
</tr>
<tr>
<td>λ</td>
<td>Slankheid</td>
<td>[-]</td>
</tr>
<tr>
<td>ρ</td>
<td>Dichtheid, soortelijke massa</td>
<td>[kg/m³]</td>
</tr>
<tr>
<td>ω</td>
<td>Hoeksnelheid</td>
<td>[rad/s]</td>
</tr>
<tr>
<td>π</td>
<td>Constante = 3,1415</td>
<td>[-]</td>
</tr>
<tr>
<td>Δc_l</td>
<td>Verandering van liftcoëfficiënt</td>
<td>[-]</td>
</tr>
<tr>
<td>Δc_m</td>
<td>Verandering van momentencoëfficiënt</td>
<td>[-]</td>
</tr>
<tr>
<td>Φ_v</td>
<td>Volumedebiet, volumestroom</td>
<td>[m³/s]</td>
</tr>
</tbody>
</table>

Afkortingen:
a.c. = aerodynamisch centrum = aerodynamic centre
np = neutrale punt = pressure centre = drukpunt
cg = zwaartepunt = centre of gravity
MSL = Mean Sea Level = gemiddeld zeeniveau

Indices:
b bocht
c centripetaal, centrifugaal
h horizontaal
i geïndiceerd
kin kinetisch
pot potentiëel
rot rotatie
s statisch
t totaal
v volume
Literatuurlijst

1. "Eenvoudige stromingsleer", deel 1
 Ir. N.H. Dekkers, Ir. J.M.H. Wijnen
 Delta Press ISBN 90 6674 651 3

2. “Aerodynamica”
 C.H.C. Brouwer
 Delta Press ISBN 90 6674 622 X

3. "Die Schule des Segelfliegens”
 M. Schiele
 Franckh'sche Verlagshandlung Stuttgart ISBN 3 440 03836 X

4. "Grundlagen für den Entwurf von Segelflugzeugen”
 F. Thomas
 Motormbuch Verlag Stuttgart ISBN 3 87943 682 7

5. "Die Entwicklung der kunststoff Segelflugzeuge"
 D. Geistmann
 Motorbuch Verlag Stuttgart ISBN 3 87943 483 2

6. Aerodynamics for pilots
 ATC Manual 51-3

7. Aerodynamic des Fluges
 Schlichting und Trockenbrodt
 Springer Verlag

8. Theorie van het Zweefvliegen
 ISBN 90-9000722
1. Inleiding

2. Doel van het vak
Zweefvliegtechnici zijn belast met het beoordelen en instandhouden van de luchtwaardigheid van zweefvliegtuigen.

Een zweefvliegtuig is luchtwaardig als:
1. het tijdens alle toegestane vluchten heel blijft en het bij een kraaklanding de inzittenden beschermt.
2. het veilig en “plezierig” bestuurbaar is.

De technicus moet daarom weten:
1. welke krachten op delen van het zweefvliegtuig werken
2. of het zweefvliegtuig sterk genoeg is om die krachten op te nemen
3. hoe het zich gedraagt onder invloed van die krachten
4. hoe de bestuurbaarheid is.

met name ingeval van (lichte) beschadiging of slijtage van delen van het vliegtuig.

Voor de technicus die wat meer in achtergrond geïnteresseerd is, zijn een aantal Intermezzi opgenomen. Ze zijn dus niet van belang voor het examen.

3. De krachten op het vliegtuig

Op een vliegtuig werken de volgende krachten:
1. luchtkrachten
2. zwaartekracht (gravitatiekracht)
3. voortstuwende krachten
4. traagheidskrachten en landingsstoten
5. krachten uitgeoefend door duwende en tillende handen, bomen aan het einde van het te korte veld, e.d.

4. Natuurkundige eigenschappen van de lucht

De aarde is omgeven door wat genoemd wordt de atmosfeer. De atmosfeer bestaat uit lucht (het medium waarin gevlogen wordt).

Net als andere gassen gehoorzaamt lucht aan de bekende wetten uit de natuurkunde.

De belangrijkste wet is de algemene gaswet:

\[pV = mRT \]

Hierin is

\[R = \text{gasconstante} = 287 \text{ [J/(kg.K)]} \text{ voor droge lucht.} \]

De lucht heeft een bepaalde massa. De massa per volume-eenheid, ook wel soortelijke massa of luchtdichtheid genoemd, kan berekend worden met behulp van de algemene gaswet:

\[\rho = \frac{m}{V} = \frac{p}{RT} \text{ [kg/m}^3\text{]} \]

Hieruit volgt dat de luchtdichtheid afhangt van de druk \(p \) en de absolute temperatuur \(T \).

Voor luchtvaartgebruik is een theoretisch gemiddelde atmosfeer vastgelegd. Deze wordt de Standaard Atmosfeer of ICAO-atmosfeer genoemd.

Op zeeniveau zijn de volgende waarden voor druk en temperatuur aangenomen:
\[p = 1013,25 \text{ [hPa]} \]
\[T = 15^\circ \text{C} = 288 \text{ [K]} \]

De temperatuur neemt met toenemende hoogte lineair af en wel met 0,65 K per 100 meter in droge lucht (in vochtige lucht met ongeveer 1K/100m).

Daarmee is de dichtheid op zeeniveau te berekenen:

\[\rho = \frac{1013,25}{287 \cdot 288} = 1,226 \text{ [kg/m}^3\text{]} \]

De atmosfeer is een oude eenheid en is momenteel vervangen door de bar, waarbij geldt
\[1 \text{ atm} = 1,01325 \text{ bar} = 1013,25 \text{ mbar} \]
INTERMEZZO 1

Hierboven wordt voor de druk op zeeniveau gebruikt het getal 1013,25 mbar. Dit merkwaardige getal is op de volgende manier ontstaan: Men is uitgegaan van een druk van 1 atm (atmosfeer) op zeeniveau (volgens het oude stelsel). In het huidige stelsel (SI-stelsel) mag de atm niet meer gebruikt worden maar moet deze uitgedrukt worden in Pa (Pascal), mbar of hPa. Als de atmosferische druk overeenkomt met een barometerstand van 76 cm kwik (Hg) dan zegt men dat de druk 1 atm bedraagt. 76 cm Hg komt overeen met een druk van:

\[
p = \rho_{\text{Hg}} \cdot g \cdot h = 13595 \times 9,80665 \times 0,76 = 101325 \text{ N/m}^2 = 101325 \text{ Pa} = 1,01325 \text{ bar} = 1013,25 \text{ mbar} = 1013,25 \text{ hPa}
\]

Verder is vastgelegd dat de temperatuurafname met de hoogte 0,65 °C/100 m bedraagt. Wiskundig kan aangetoond worden dat de temperatuur lineair met de hoogte afneemt tot een hoogte van ca. 11 km. Dit gebied dat voor de zweefvliegerij belangrijk is wordt de *troposfeer* genoemd. De druk neemt niet lineair met de hoogte af maar logaritmisch. Hoe precies is hier niet van belang. Redelijk nauwkeurig kan de drukafname met de hoogte in trappen worden weergegeven:

<table>
<thead>
<tr>
<th>Hoogte</th>
<th>Drukafname</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m/bar</td>
</tr>
<tr>
<td>MSL</td>
<td>8</td>
</tr>
<tr>
<td>1000 m</td>
<td>9</td>
</tr>
<tr>
<td>2000 m</td>
<td>10</td>
</tr>
<tr>
<td>3000 m</td>
<td>11</td>
</tr>
<tr>
<td>5000 m</td>
<td>14</td>
</tr>
</tbody>
</table>

Op elke tussenliggende hoogte kan daarmee de soortelijke massa van de lucht berekend worden.

5. Aerodynamica

5.1. Het ontstaan van luchtkrachten

Stilstaande lucht bestaat uit deeltjes (moleculen) die kriskras langs elkaar schieten (de zogenoemde *Brownscbe beweging*). Elk heeft zijn eigen snelheid en richting (fig.5.1). Als ze tegen een wand of tegen elkaar botsen verandert plotseling hun bewegingsrichting (vergelijkbaar met biljartballen). Het botsen van ontelbare deeltjes tegen een oppervlak veroorzaakt een druk op dat oppervlak. Naarmate de temperatuur van de lucht hoger is, neemt de snelheid van de luchtdeeltjes toe.

De grootte van de druk wordt bepaald door het aantal botsingen per oppervlakte-eenheid, de snelheid van de deeltjes en de massa van de botsende deeltjes. Voorts komt een botsing loodrecht op de wand harder aan dan een, die de wand onder een hoek raakt.

5.2. Enkele begrippen

- Stationair = tijdonafhankelijk (bijvoorbeeld een stationaire stroming)
- Vector = grootte, gekenmerkt door grootte en richting (bijv. kracht, snelheid, versnelling)
- Eenparige beweging = beweging waarbij de versnelling naar grootte en richting constant is.
Als de versnelling gelijk aan nul is dan is de snelheid naar grootte en richting constant.

5.3. Definities, veronderstellingen, stromingswetten

5.3.1. Veronderstellingen

In de navolgende theorie wordt van de volgende veronderstellingen uitgegaan:

1. Lucht is onsamendrukbaar (incompressibel)
 Aangenomen wordt dat wanneer in een stroming drukverschillen ontstaan dit niet tot gevolg heeft dat daardoor het aantal deeltjes per kubieke meter verandert ($\rho = constant$).
 Dit is niet helemaal juist maar bij snelheden tot $\pm 70 \text{ m/s} \approx 250 \text{ km/h}$ is de fout verwaarloosbaar klein.
 De berekeningen worden daardoor een stuk eenvoudiger.

2. De wrijving tussen de luchtdeeltjes onderling wordt verwaarloosd ("wrijvingsloos medium").
 Er wordt aangenomen dat de luchtlagen welke met verschillende snelheden langs elkaar stromen, geen wrijvingskrachten op elkaar uitoefenen.
 Bij snelheidsverschillen in de stroming om vliegtuigen, welke niet te snel vliegen, is de invloed van de wrijving verwaarloosbaar.
 Dit geldt echter niet voor grenslagen!

5.3.2. Definities

Een **stromlijn** is een baan van een luchtdeeltje in een stroming die niet in de tijd verandert. Een dergelijke stroming wordt een **stationaire stroming** genoemd.

Dit betekent dat wanneer even later een ander deeltje op dezelfde plaats aankomt als het eerste, het dezelfde baan zal volgen.

Een **stroombuis** is een pijp waarvan de wand bestaat uit stroomlijnen (fig. 5.2).

In het voorvlak I stroomt er lucht in, in het achtervlak stroomt deze lucht er weer uit.

De wand bestaat uit stroomlijnen, dus banen van luchtdeeltjes.

Dit betekent dat er door de wanden geen lucht in of uit gaat!

De stroomlijn en stroombuis zijn handige hulpmiddelen bij het bestuderen van stromingen.

![Fig.5.2.: De stroombuis](image)

5.4. De continuïteitsvergelijking

Aan de linkerkant in fig 5.3 stroomt lucht de stroombuis in, aan de rechterkant stroomt de lucht er uit.

Vanwege de definitie van de stroomlijn en stroombuis is de stroming stationair, dus de buis behoudt zijn vorm.

De hoeveelheid die bij I de buis binnen stromt, stroomt er bij II in dezelfde tijd weer uit. Dit betekent dat de massastroom door elke doorsnede constant is. Als aangenomen wordt dat de dichtheid niet verandert, moet ook de volumestroom door elke doorsnede constant blijven. Dit wordt de **continuïteitswet** genoemd.
Het volume is gelijk aan grondvlak maal hoogte. De volumestroom is dan het volume per tijdseenheid of in formulevorm:

\[\Phi = \frac{V}{t} = \frac{A_s}{t} = A \cdot \frac{s}{t} = A \cdot v \quad [m^3 / s] \]
(5.1)

Voor elke doorsnede geldt dus dat het product van oppervlak \(A \) en snelheid \(v \) constant is.

Voor doorsnede I en II geldt dan:

\[A_1 \cdot v_1 = A_2 \cdot v_2 \quad [m^3 / s] \]
(5.2)

Als de oppervlakten gegeven zijn kan de snelheid in elke doorsnede berekend worden:

\[v_2 = v_1 \cdot \frac{A_1}{A_2} \quad [m / s] \]
(5.3)

Dit betekent, dat als buizen nauwer worden de snelheid toeneemt en waar stroomlijnen verder uit elkaar liggen de snelheid afneemt (fig.5.3).

5.5. De energiewet

Een van de belangrijkste vergelijkingen uit de stromingsleer en de thermodynamica is de energiewet. Deze zegt dat geen energie kan verdwijnen of uit niets ontstaan. De totale algebraïsche som van alle vormen van energie is dus constant.

Wat er in de natuur gebeurt is dat de ene vorm van energie in de andere wordt omgezet. Er zijn vele vormen van energie bekend.

In de stromingsleer speelt deze energiewet een zeer belangrijke rol. Het zal duidelijk zijn dat in de stromingsleer maar een beperkt aantal energievormen een belangrijke rol spelen.

De belangrijkste zijn (per eenheid van volume):

- de drukenergie \(p \)
- de kinetische energie \(\frac{1}{2} \rho v^2 \)
- de potentiële energie \(\rho gh \)

Bij gassen speelt de potentiële energie praktisch geen rol, bij vloeistoffen wel.

5.6. De Wet van Bernoulli

De som van bovengenoemde vormen van energie blijft dus constant. Alle andere vormen van energie worden verwaarloosd dus ook de wrijving!
De drie energievormen kunnen weergegeven worden in een formule:

\[p_1 + \frac{1}{2} \rho \cdot v_1^2 + \rho \cdot g \cdot h_1 = p_2 + \frac{1}{2} \rho \cdot v_2^2 + \rho \cdot g \cdot h_2 \]

(5.4)

Deze vergelijking staat bekend als de Wet van Bernoulli en geldt voor een niet-samen drijfbaar wrijvingsloos medium.

Omdat de potentiële energie van een gas (lucht) over het algemeen verwaarloosbaar klein is ten opzichte van de andere energietermen krijgt de vergelijking een veel eenvoudiger vorm:

\[p_1 + \frac{1}{2} \rho \cdot v_1^2 = p_2 + \frac{1}{2} \rho \cdot v_2^2 \]

(5.5)

De vergelijking zegt dat als de snelheid in een medium (bijvoorbeeld lucht) toeneemt de druk daar ter plaatse moet afnemen en omgekeerd.

5.7. De totale druk, statische druk en stuwdruk

De wet van Bernoulli kan nu worden toegepast op het rotatiesymmetrische lichaam volgens fig.5.4 dat in lucht is opgesteld. De lijnen die in de figuur getekend zijn, zijn stroomlijnen. De wet van Bernoulli kan op iedere stroomlijn worden toegepast. De meest interessante is de middelste die naar 2 gaat. Immers deze stroomlijn komt daar tot stilstand; de snelheid is daar gelijk aan nul. \(v_1 \) is de snelheid in de ongestoorde stroming.

De wet van Bernoulli luidt voor de middelste stroomlijn:

\[p_1 + \frac{1}{2} \rho \cdot v_1^2 = p_2 \]

(5.6)

De snelheid \(v_2 \) is immers gelijk aan nul. Het punt 2 wordt het stuw punt genoemd. De druk in het stuw punt ligt dus \(\frac{1}{2} \rho v_2^2 \) boven de druk \(p_1 \).

De druk \(p_1 \) wordt de statische druk \(p_s \) genoemd, de druk \(p_2 \) de totale druk \(p_t \) (ook wel energiedruk genoemd) en de term \(\frac{1}{2} \rho v_2^2 \) de stuwdruk; vaak ook weergeven met het symbool \(q \).

Zodat ook geschreven kan worden:

\[p_1 = p_s + \frac{1}{2} \rho \cdot v_2^2 \]

(5.7)

of kortweg:

\[p_t = p_s + q \]

(5.8)

5.8. Profielstroming

5.8.1. Wrijving, weerstand, grenslagen

Een symmetrisch lichaam zonder invalshoek in de stroming heeft alleen weerstand. Omdat deze weerstand het gevolg is van de (door wrijving beïnvloedde) drukverdeling rondom het lichaam wordt deze vorm van wrijving de drukweerstand of vormweerstand genoemd.

Deze is afhankelijk van de vorm van het lichaam. De vormweerstand is maximaal voor een plaat die loodrecht wordt aangestroomd (fig.5.5.).
Drukweerstand wordt minimaal gemaakt door het optreden van wervels te voorkomen. Er moet dus voor worden gezorgd dat de stroomlijnen weer netjes bij elkaar komen. Vandaar vloeistukken en scherpe achterranden van vliegtuigvleugels. Omdat drukweerstand (vormweerstand) het gevolg is van wervelvorming is het duidelijk dat deze weerstand aan de achterzijde van het lichaam ontstaat. De vormgeving van de achterkant is dus veel belangrijker voor het verminderen van de vormweerstand dan die van de voorkant. Een andere vorm van weerstand is de oppervlaktwrijvingsweerstand. Dat is de weerstand die ontstaat door de wrijving tussen de lucht en het oppervlak. Wordt de plaat in figuur 5.5. horizontaal in de stroming geplaatst dan bestaat de wrijving voornamelijk uit oppervlaktwrijving. De totale wrijving van een lichaam bestaat dan uit drukweerstand en oppervlaktwrijving. Deze totale wrijving wordt aangegeven met de letter D van het engelse woord "drag".

![Fig. 5.5.: Stroming rond verschillende lichamen](image)

Aangetoond kan worden dat de weerstand van een lichaam in een niet-wrijvingsloze stroming evenredig is met een bepaald oppervlak, met de stuwdruk en verder nog afhangt van de vorm. In formulevorm:

$$D = c_d \frac{1}{2} \rho v^2 A$$ \hspace{1cm} (5.9)

De evenredigheidsfactor c_d is de vormfactor en wordt de weerstandscoefficiënt genoemd. Deze coëfficiënt is dimensieloos. Over het oppervlak moet een belangrijke opmerking gemaakt worden. In de praktijk worden twee verschillende oppervlakken gebruikt. Bestaat de weerstand van lichamen voornamelijk uit vormweerstand zoals in fig.5.6 hieronder, dan wordt als oppervlak A genomen het oppervlak loodrecht op de stroming; bestaat echter de weerstand voornamelijk uit oppervlaktwrijving zoals bij vleugelprofielen of gebogen platen dan wordt als oppervlak genomen het oppervlak in de richting van de stroming!! (het vleugeloppervlak!). In de onmiddellijke omgeving van een lichaam zijn de snelheden kleiner dan op grotere afstand van dat lichaam. Dit wordt veroorzaakt doordat de stroming aan het lichaam blijft kleven. De luchtdoeltjes, die direct in aanraking zijn met de wand, zullen dezelfde snelheid hebben als de wand, dat wil zeggen de snelheid nul ten opzichte van die wand. Door wrijving tussen de luchtdoeltjes ontstaat de snelheid verder van de wand af, met de afstand tot de wand, geleidelijk toename tot dat uiteindelijk de snelheid gelijk is aan de stromingsnelheid in de ongestoorde stroming. De dunne laag waarin de snelheid lager is dan de snelheid in de ongestoorde stroming wordt de grenslaag genoemd. Het gehele stromingsveld om een lichaam (bijvoorbeeld de vleugel van een zweefvliegtuig) kan, volgens Prandtl, verdeeld worden in een gebied met verwaarloosbare wrijving, de zogenaamde buitenstroming, en de grenslaagstroming waarin zich de wrijvingsverschijnselen voordoen (fig.5.7). In de laminaire grenslaag is de weersheid gering, omdat de luchtdoeltjes netjes langs elkaar schuiven. In de turbulente grenslaag is de weerstand gering, omdat de luchtdoeltjes netjes langs elkaar schuiven.
Grenslen hebben echter de eigenschap om op enige afstand vanaf de neus van het voorwerp "om te slaan" en turbulent te worden. Dat wil zeggen er ontstaan wervels in de grenslaag (fig.5.7).

Dit heeft twee gevolgen:

1. de grenslaag wordt aanzienlijk dikker
2. de weerstand neemt daardoor aanmerkelijk toe.

Hoe gladder het oppervlak, hoe verder het omslagpunt stroomafwaarts komt te liggen, en hoe groter het laminaire deel van de grenslaag is (en hoe kleiner de wrijvingsweerstand is). De laminaire grenslaag op de vleugel van een zweefvliegtuig is zeer dun, vaak minder dan 1 mm. Zeer kleine ruwheiten (stof, vliegjes e.d.) kunnen daarbij zo een laminaire grenslaag verstoren en omslag veroorzaken.

![Fig. 5.6: De weerstandscoëfficiënt van verschillende lichamen](image)
De stroming verloopt van links naar rechts

![Fig. 5.7: De opbouw van de grenslaag op een vlakke plaat](image)
Waar in de stromingsrichting de statische druk kleiner wordt (dus de stroomlijnen convergeren) is de neiging om te slaan kleiner dan waar de statische druk groeit (divergerende stroming). Vandaar dat "laminaire profielen" (ontworpen met het oog op het verkrijgen van een zo groot mogelijk laminaire deel van de grenslaag) de grootste dikte relatief ver naar achter hebben liggen. De grenslaagopbouw rond een profiel laat fig.5.8 zien.
5.8.2. Invloed van de oppervlakteruwwheid
Onder de ruwheid verstaat men het gemiddelde verschil tussen berg en dal van het oppervlakteprofiel (fig. 5.9).
De toelaatbare ruwheid waarbij de ligging van het omslagpunt niet meer wordt beïnvloed ligt bij \(k = 0,02 \) mm. Deze ruwheid is te bereiken door het oppervlak te spuiten met verf. Een uitzondering hierop is de neus. Hier moet het oppervlak gepolijst worden, omdat daar de grenslaag zeer dun is; de ruwheid heeft dan een grote invloed.

5.8.3. Het ontstaan van luchtkrachten
De onderdruk op de profielbovenkant en de overdruk aan de profielerkant vormen samen de liftkracht. De voorwaarde voor een onderdruk is (volgens Bernoulli) een hoge luchtsnelheid, voor de overdruk een lage luchtsnelheid. De versnelling boven en de vertraging onder is het werk van twee stromingen die bij elkaar worden opgeteld. Hierop berust de draagvleugelhozie volgens Ludwig Prandtl.

(De theorie die men vaak tegenkomt waarbij uitsluitend Bernoulli verantwoordelijk zou zijn voor het ontstaan van de liftkracht is dus niet juist!!)
Wort wordt een oneindig glad vleugelprofiel in een wrijvingsloze stroming gebracht dan ontstaat uitsluitend een parallelstroming maar daarmee nog geen lift (fig. 5.10).
Wort nu een gewelfd vleugelprofiel dat niet oneindig glad is in een stroming gebracht dan gebeurt het volgende. Door deze welving worden de stroomlijnen aan de bovenkant samengedrukt (zie fig. 5.11), de stromende lucht heeft slechts een kleinere doorsnede ter beschikking. Door deze doorsnedeverkleining
wordt echter de oorspronkelijke luchtsnelheid vergroot, wat een drukverlaging tot gevolg heeft volgens Bernoulli. In de figuur is nog geen sprake van lift (draagkracht). Dat heeft tot gevolg dat de lucht van de onderkant (onderdruk) naar de bovenkant (onderruk) van het profiel wil stromen en wel zowel bij de neus van het profiel als aan de achterkant (fig.5.16.a).

De over het profiel stromende lucht wordt door de lucht die onder het profiel stroomt tegengewerkt en vormt de zogenaamde startwervel (fig.5.11.b). Deze startwervel laat direct los van het profiel en blijft achter. De lucht die vanaf de neus over de bovenkant van het profiel stroomt keert aan het einde van het profiel van richting om en stroomt aan de profielonderkant in tegenstelde richting terug. Deze stroming zorgt voor de tegenstelde wervel omdat volgens de werveltheorie de som van de wervels gelijk moet zijn aan nul. De startwervel in de figuur is een linksdraaiende wervel. Deze moet tegengewerkt worden door een rechtsdraaiende wervel (fig.5.11.c).

Deze bewegingscomponent is profielgebonden en blijft gedurende de gehele vlucht bestaan, zolang tenminste het profiel niet overtrokken is. Aan de bovenkant van het profiel wordt de luchtsnelheid (v\text{b}) vergroot met de circulatiesnelheid z tot (v\text{b} + z). Aan de onderkant wordt de luchtsnelheid v\text{o} verkleind met de circulatiesnelheid z tot (v\text{o} – z) (fig.5.11.d).

Het verloop van de drukken is te zien in fig.5.13. Het aandeel van de onderdruk aan de liftkracht is ongeveer 3x groter dan het aandeel van de overdruk onder het profiel. Dat betekent dat een vleugel aan de lucht “hangt” en niet op de lucht “rust”. De som van alle luchtkracht (die naar boven werkt) wordt de luchtkracht genoemd (fig.5.12).

Als een sommering gemaakt wordt van alle krachtjes die het gevolg zijn van de geschatte drukverdeling, dan is de totale kracht én het aangrijpingspunt van die kracht bekend. Deze plaats wordt het drukpunt ("centre of pressure") genoemd en wordt als volgt gedefinieerd:
Het drukpunt is het snijpunt van de werklijn van de resulterende kracht F en de koorde (fig.5.12).

Het drukpunt ligt bij symmetrische profielen altijd op dezelfde plaats (behalve bij overtrek) en wel op 25% van de koorde gemeten vanaf de voorzijde van het profiel.

Bij een niet-symmetrisch profiel, ook wel gewelfd profiel genoemd, verandert het drukpunt van plaats. Het drukpunt loopt met toenemende invalshoek naar voren (naar de neus toe). Omgekeerd met het verkleinen van de invalshoek loopt het drukpunt naar achteren. Dit beïnvloedt de stabiliteit van een vleugel (fig. 5.13).

Uit figuur 5.13 volgt dat de grootste liftkracht optreedt bij een invalshoek van $+15^\circ$ daarbij loopt het drukpunt naar achteren. Opvallend in de figuur is dat als de invalshoek kleiner wordt de kracht eerst snel naar achteren loopt om vervolgens bij -9° om de slaan in een neerwaartse kracht.

Om het drukpunt oefenen de luchtkrachten geen moment uit. Om de profieleigenschappen vast te leggen wordt het moment bij verschillende invalshoeken ten opzichte van een vast momentenpunt weergegeven, bijvoorbeeld de profielneus.

Fig. 5.13: Het drukverloop rond een profiel

De momentenarm is dan de afstand tussen de profielneus en het drukpunt. De lengte van de momentenarm varieert dus ook met veranderende invalshoek.

Fig. 5.14: Het verloop van het drukpunt met de invalshoek

Dit verloop van het drukpunt heeft tot gevolg dat het drukpunt voor of achter het zwaartepunt kan komen te liggen. Er ontstaat dan een neuslastig moment (fig.5.15).
Fig. 5.15: Het ontstaan van neuslastig en staartlastig moment

Ligt de liftkracht voor het zwaartepunt dan ontstaat bij een groter wordende invalshoek een steeds groter staartlastig moment die de invalshoek nog verder wil laten toenemen. Omgekeerd loopt het drukpunt met afnemende invalshoek naar achteren waardoor met afnemende invalshoek een neuslastig moment optreedt die de invalshoek verder doet verkleinen. Hierdoor wordt het vliegtuig dus instabiel.

Over het algemeen zullen profielen ontwikkeld worden waarbij het drukpunt zoveel mogelijk op zijn plaats blijft. Dit worden *drukpuntvaste profielen* genoemd.

Naast het drukpunt wordt ook het *aerodynamisch centrum* ("aerodynamic centre") gebruikt. Dit punt is als volgt gedefinieerd:

Het aerodynamisch centrum is dat punt op de koorde van het profiel waar het moment constant is en onafhankelijk is van de lift.

Later zal in het hoofdstuk over de stabiliteit hier nog op worden teruggekomen.

De kracht F in figuur 5.12 kan ontbonden worden in twee componenten: een component D in stromingsrichting en de andere component L loodrecht op de stromingsrichting. De laatste component noemt men de *draagkracht* of *lift* (fig.5.16).

![Diagram](image1)

Fig. 5.16: De lift- en weerstandskracht

In eerste instantie neemt de grootte van L toe recht evenredig met de toename van de invalshoek α, waaronder de luchtstroom het profiel treft. Bij grote waarden van α neemt de toename van L echter af, terwijl bij overschrijding van een zekere kritieke waarde van α de draagkracht zelfs snel afneemt (overtrekken). De andere component, de weerstand D blijft echter steeds toenemen.

Voor de draagkracht L geldt:

$$L = c_L \cdot \frac{1}{2} \cdot \rho \cdot v^2 \cdot A$$

(5.9)
en voor de weerstand:

\[D = c_d \cdot \frac{1}{2} \rho \cdot v^2 \cdot A \] \hspace{1cm} (5.10)

\(c_l \) en \(c_d \) zijn evenredigheidsconstanten die sterk afhankelijk zijn van de invalshoek \(\alpha \) en de vorm van de plaat of het profiel.

Omdat de weerstand van vleugelprofielen voornamelijk bestaat uit oppervlaktewrijving is het oppervlak \(A \) in beide vergelijkingen het oppervlak in stromingsrichting.

Omdat de invalshoek over het algemeen klein is neemt men in de praktijk altijd het product van gemiddelde koorde \(C_{\text{gem}} \) en vleugelbreedte \(b \) \((A = C_{\text{gem}} \cdot b) \)

5.8.4. Coëfficiënten

Het blijkt dat de kracht op een lichaam in een stroming evenredig is met de stuwdruk \(\frac{1}{2} \rho \cdot v^2 \) en het oppervlak \(A \) van het lichaam (zoals hierboven reeds is uiteengezet).

Naast de boven reeds genoemde lift- en weerstandskracht werkt er ook nog een moment op het vleugelprofiel (met koorde \(C \)). De afspraak is dat een staartlastig moment positief is.

De evenredigheidsconstanten in de beide formules zijn dimensieloze grootheden. In de formule voor het moment zal dus nog met een lengte vermenigvuldigd worden. Als lengte wordt de koorde \(C \) (chord) genomen.

Voor de momentencoëfficiënt moet wel vermeld worden voor welk momentenpunt de aangegeven waarden gelden.

De coëfficiënten hangen voornamelijk af van de invalshoek \(\alpha \) en de vorm van de vleugel.

5.8.5. Het getal van Reynolds

De aerodynamische coëfficiënten hangen ook nog enigszins af van de schaal waarop wordt gewerkt, dus van de grootte van het vliegtuig. Eenzelfde profiel heeft in dezelfde stroming bij een model (koorde bijvoorbeeld 10 cm) iets andere eigenschappen dan bij een echte vleugel met een koorde van bijvoorbeeld 1 meter. Dit wordt het schaaleffect genoemd.

Het schaaleffect wordt uitgedrukt in het getal van Reynolds. Het getal van Reynolds is een dimensieloos getal en wordt bepaald door de snelheid \(v \) waarmee een profiel met koorde \(C \) door de lucht met dichtheid \(\rho \) en dynamische viscositeit \(\eta \) verplaats wordt. Het getal van Reynolds \(R_e \) luidt:

\[R_e = \frac{\rho \cdot v \cdot C}{\eta} \] \hspace{1cm} (5.14)

De dichtheid hangt af van de temperatuur en druk van de lucht volgens de algemene gaswet en de viscositeit hangt alleen af van de temperatuur (de invloed van de druk is vrijwel verwaarloosbaar).

Fysisch gezien is eigenlijk het getal van Reynolds een verhoudingsgetal en wel de verhouding van trogheidskrachten en wrijvingskrachten.

Hieruit volgt dat in een wrijvingsloos medium het getal van Reynolds oneindig groot is. Hoe kleiner het getal hoe groter de invloed van de wrijving.

Bij eenzelfde getal van Reynolds zal de omstroming van meetkundig gelijkvormige lichamen gelijk zijn.
Bij een bepaalde waarde van Re begint de stroming turbulent te worden. Het is interessant te weten wáár dat gebeurt.
Dit begint altijd daar waar de stroomlijnen beginnen te divergeren en wel des te eerder, naarmate zij dit sneller moeten doen (door grotere snelheid of grotere afbuiging).
Bij een vleugel zal dus over het algemeen de overgang plaatsvinden vlak ná het punt van maximale dikte. Bij lage weerstandsvleugelprofielen wordt dit punt meestal zo ver mogelijk naar achteren gelegd, zodat een zo groot mogelijk gedeelte van de vleugel laminair omstroomd wordt. Fig.5.17 laat het verschil zien tussen een gewoon profiel en een profiel waarbij geprobeerd is de stroming zo lang mogelijk laminair te houden.

Fig.5.17.: Een turbulent- en een laminair profiel

5.8.6. Profielomstroming bij veranderende invalshoek
De manier waarop lucht om een profiel stroomt is afhankelijk van de stand van dat profiel in de stroming. De stand wordt vastgelegd door de hoek α tussen de ongestoorde stroming en een lijn in dat profiel.
De lijn in het profiel kan op twee manieren worden vastgelegd:
1. De raaklijn aan de onderkant van het profiel kan genomen worden (gebeurt tegenwoordig niet veel meer) of
2. Het middelpunt van de neusradius wordt verbonden met de staart van het profiel door middel van een rechte lijn (wordt tegenwoordig het meest gebruikt). Voordelen van deze methode is dat bij van een symmetrisch profiel de lift gelijk aan nul is bij de invalshoek van 0°.

In fig.5.18 zijn voor een tweetal invalshoeken de drukverdelingen getekend. Onder het profiel heerst een overdruk, er boven een onderdruk.

Fig.5.18.: De drukverdeling bij verschillende invalshoeken

Bij de drukverdeling kunnen de volgende opmerkingen gemaakt worden:
- Als de invalshoek groter wordt loopt het drukpunt naar voren. Dit komt door de toenemende onderdruk boven de neus van het profiel. Door de verplaatsing van het aangrijnepunt (en de verandering van grootte en richting) van de luchtkrachten verandert ook het moment.
- Als de invalshoek groter wordt neemt de liftkracht toe tot een zekere grens en neemt daarna weer af.
- Met toenemende invalshoek groeit de weerstand steeds sneller.
- Bij een bepaalde invalshoek kan de stroming de bovenste contour van het profiel niet volgen en laat los. Er ontstaat een wervelgebied waardoor de draagkracht in elkaar stort (fig.5.19) en het profiel overtrekt.
Fig. 5.19.: Het loslaten van de stroming (overtrekken)

Wanneer de aerodynamische coëfficiënten uitgezet worden tegen de invalshoek α dan ontstaat fig.5.20.

Uit de figuur volgt:

- Bij toenemende invalshoek neemt de liftcoëfficiënt aanvankelijk zuiver lineair toe tot in de buurt waar het grote loslaten begint. Deze loslating kan zeer plotseling plaatsvinden zoals in de figuur, vaak ook verloopt de lijn echter vrij geleidelijk naar een maximum om daarna te dalen. Dit laatste levert een goedmoedig overtrekgedrag op.
- Het is verbazingwekkend dat de toename van c_l met α (dit wordt de liftgradiënt genoemd) voor alle profielen praktisch dezelfde waarde heeft en exact recht is tot in de buurt van het overtrekken.
- De hoek waarbij overtrek (stall) plaatsvindt ligt voor de meeste profielen tussen de 16° en 20°. Dit is de kritische invalshoek.
- De weerstand heeft een minimum. Bij kleiner wordende invalshoeken neemt de weerstand langzaam toe; bij groter wordende invalshoeken neemt de weerstand snel toe.
- De momentencoëfficiënt neemt ongeveer lineair toe met de invalshoek.

Fig.5.20.: De aerodynamische coëfficiënten als functie van de invalshoek

5.8.7. De profielpolaire

Voor elke waarde van de invalshoek α kan de waarde van c_l en die van c_d worden bepaald.

In fig.5.21 is de liftcoëfficiënt uitgezet tegen de weerstandscoëfficiënt voor verschillende waarden van de invalshoek. De resulterende kromme wordt de profielpolaire genoemd.
In de figuur zijn een paar opvallende punten aan te geven:

Punt A: Grote negatieve invalshoeken zijn nodig voor rugvlucht; hier hoort uiteraard een negatieve c_l-waarde bij.

Punt B: In dit punt is $c_l = 0$ en dus ook de lift. De invalshoek is hier nog negatief (het betreft dus kennelijk een asymmetrisch profiel).

Punt C: Het punt met de grootste c_l/c_d-verhouding. Het zweefvliegtuig heeft hier de beste glijhoek (wordt later besproken).

Punt D: In dit punt is de daalsnelheid het kleinst (komt eveneens later aan de orde).

Punt E: De maximale waarde van c_l wordt bereikt. Het laatste deel van de landing vindt plaats met een c_l-waarde die hier vlak voor ligt.

Punt F: Hier begint het profiel te overtrekken. De lift van het vliegtuig neemt dramatisch af waardoor het niet meer in staat is te vliegen.

![Fig.5.21.:De profielpolaire](image)

5.9. Vleugels

5.9.1. Tipwervels/neerstoming/geïnduceerde weerstand

Tot nu toe is de tweedimensionale profielstroming behandeld. De stroming blijft daarbij in of evenwijdig aan het vlak van de tekening en er zijn geen snelheidscomponenten loodrecht op het vlak van tekening. De stroming in elk doorsnede-vlak gedraagt zich als het ware onafhankelijk van wat er naast gebeurt. Dit is alleen maar het geval bij oneindig lange vleugels met een constante breedte (koorde).
De vraag is nu: Wat gebeurt er wanneer de spanwijdte niet oneindig groot is, ofwel, als de koorde van de vleugel naar de tip toe kleiner wordt?

Eeerder is uitgelegd dat onder het profiel een overdruk ontstaat en boven het profiel een onderdruk. Een medium, in dit geval lucht, heeft de neiging van een overdruk naar een onderdruk te bewegen en komt in een stuw punt tot stilstand. Het is voor de lucht onder de vleugel niet mogelijk om via de voorrand of via de achterrand naar boven te stromen. Daarom zal de lucht proberen om de tippen heen omhoog te stromen. Hierdoor zal aan de bovenzijde van de vleugel de luchtstroom niet mooi evenwijdig aan de vliegrichting zijn, maar een beetje naar binnenwaarts gericht. Evenzo aan de onderzijde naar buiten gericht (fig.5.22).

Door de uit elkaar lopende richtingen van de luchtstromen aan de boven- en onderzijde zal aan de achter rand van de vleugel een wervelband ontstaan, waarvan de sterkte naar de tippen toe toeneemt. Deze van de vleugelachterrand loslatende werveltjes veroorzaken ("induceren") verticale snelheidscomponenten, die elkaar bij aangrenzende wervels echter goeddeels compenseren.

Fig.2.23 toont een foto van vliegtuig (de Hawker Harrier) waar duidelijk de onderdruk boven de vleugel te zien is omdat daar ten gevolge van de zeer lage druk condensatie ontstaat. Eveneens zijn goed te zien de tipwervels.

Fig.5.22.: Het ontstaan van de tipwervel
Het wervelveld dat van de vleugel afstroomt bevat veel energie die verloren gaat. Deze energie wordt als het overwinnen van een extra weerstand (de *geïnduceerde weerstand* genoemd) door de vleugel opgebracht.

Theoretisch kan worden afgeleid dat voor de geïnduceerde weerstand geldt:

$$ D_i = c_{di} \frac{1}{2} \rho \cdot v^2 \cdot A $$

en voor de geïnduceerde weerstandscoëfficiënt:

$$ c_{di} = \frac{c_i^2}{\pi \cdot \lambda} \cdot K $$

Hierin is K een correctiefactor.

De betekenis van deze formules wordt hieronder uitgelegd.

5.9.2. De invloed van de vleugelslankheid

De grootte λ in formule 5.16 is de *vleugelslankheid* (of kortweg de *slankheid* genoemd).

De slankheid is de verhouding tussen de vleugelspanwijdte en de gemiddelde vleugelkoorde.

Dus:

$$ \lambda = \frac{b}{C_{gem}} = \frac{b^2}{A} $$

Naarmate de slankheid groter wordt, wordt de geïnduceerde weerstandscoëfficiënt kleiner. Dit is ook logisch: als de verhouding spanwijdte/koorde toeneemt gaat de vleugel meer op een oneindig lange vleugel lijken en krijgt de stroming een tweedimensionaal karakter. De omstroming om de tippen krijgt relatief minder invloed. Er treedt dan minder wervelvorming op en de geïnduceerde weerstand neemt af.

Een slanke vleugel is dus gunstig voor een lage geïnduceerde weerstand.

5.9.3. De invloed van de liftverdeling

Bewezen kan worden dat bij een gegeven vleugeloppervlak A de geïnduceerde weerstand het kleinst is als de verdeling van de lift over de spanwijdte elliptisch is (fig.5.24b).

Dit is in eerste instantie ook het geval als de vleugel zelf ook een elliptisch oppervlak heeft. Naarmate de liftverdeling sterker afwijkt van een elliptische wordt de geïnduceerde weerstand groter, hetgeen in formule 5.16 betekent dat de factor K groter wordt dan 1.
De liftverdeling over de vleugel afhankelijk van de vleugelvorm (fig.5.24.)

Aangetoond kan worden (zie Intermezzo II) dat de geïnduceerde weerstand omgekeerd evenredig is met \(v^2\), dit in tegenstelling tot de andere weerstandscomponenten die recht evenredig zijn met \(v^2\). Dit betekent dus dat hoe langzamer gevlogen wordt hoe groter de geïnduceerde weerstand is. Vooral bij lage snelheden (zoals het cirkelen in de thermiek) speelt de geïnduceerde weerstand een grote rol.

Boven is gezegd dat een zeer slanke elliptische vleugelvorm de gunstigste is. Omdat een zuiver elliptische vorm ronde randen heeft, wat constructief nogal kostbaar is, wordt deze vorm in de praktijk voor zweefvliegtuigen veelal benaderd door een slanke, dubbel trapeziumvormige vleugel; met een tipkoorde die 25 à 30% van de wortelkoorde bedraagt (fig.5.24c).

Behalve door de vorm van het vleugeloppervlak wordt de liftverdeling ook bepaald door de "lokale profielen".

In verband met de stabiliteit is het zeer ongewenst dat, wanneer het vliegtuig overtrekt (de stroming van de vleugel loslaat), dit bij een van de tippen zou beginnen. Daardoor zou daar ter plaatse, op grote afstand van de romp, de liftkracht wegvallen en zou de kans bestaan dat het vliegtuig over een kant zou wegvallen en in een tolvlucht zou terechtkomen. Daarom worden vliegtuigen zo gebouwd dat bij vergroting van de invalshoek van de vleugel, de tippen pas het laatst overtrekken; dat wil zeggen nadat eerst al de binnenvleugel overtrokken is geraakt.

Dit kan op twee manier worden bereikt:

1. De vleugel krijgt naar de tip toe een negatieve wrong, dat wil zeggen dat de invalshoek van het profiel aan de tip kleiner is dan aan de wortel (fig.5.25a) (geometrische tipverdraaiing genoemd)
2. De vleugel krijgt naar de tip toe een minder gewelfd profiel waardoor het tipprofiel bij een grotere invalshoek pas overtrekt (fig.5.25b) (aerodynamische tipverdraaiing genoemd)

INTERMEZZO II

Bij een bepaald gewicht \(G\) van het vliegtuig geldt voor de eenparig rechtlijnige vlucht:

\[
G = L = c_1 \cdot \frac{1}{2} \cdot \rho \cdot v^2 \cdot A
\]

waaruit volgt:

\[
c_1 = \frac{G}{\frac{1}{2} \cdot \rho \cdot v^2 \cdot A}
\]

Dit in vergelijking 5.15 levert:

\[
D_i = \frac{\left(\frac{G}{\frac{1}{2} \cdot \rho \cdot v^2 \cdot A}\right)^2 \cdot K}{\pi \cdot \lambda} = \frac{G^2 \cdot K}{\frac{1}{2} \cdot \rho \cdot v^2 \cdot A}
\]

Hieruit volgt dat de geïnduceerde weerstand omgekeerd evenredig is met de snelheid in het kwadraat. Hoe langzamer het vliegtuig vliegt hoe groter de geïnduceerde weerstand.
Ook blijkt uit de formule dat zware vliegtuigen (bijv. cirkelend met water) een veel grotere geïnduceerde weerstand hebben dan lichtere toestellen.

Bij een elliptisch vleugeloppervlak ontstaat dan echter een afwijking van de elliptische liftverdeling. Deze stabiliteitswens wordt dus betaald met een grotere geïnduceerde weerstand. Dit is echter goeddeels te compenseren door de koorde aan de tippen groter te maken dan volgens de beste benadering van de elliptische vorm gewenst is.

5.9.4. **De invloed van de vlegsnelheid**

Vergelijking 5.20 laat direct zien wat de invloed van de snelheid is op de geïnduceerde weerstand:

- Bij lage snelheid is het gunstige effect van de slankheid het grootst.
- Meer weerstand betekent bij een zweefvliegtuig: grotere daalsnelheid (bij een motorvliegtuig: meer benodigd vermogen).
- Grote vleugelslankheid heeft dus een gunstige invloed op de daalsnelheid bij lage vlegsnelheid. Dit is de situatie bij het cirkelen in de thermiek.
- Bij het steken is de snelheid groot en dus de geïnduceerde weerstand klein, zodat deze in het niet zinkt bij de profielweerstand die kwadratisch toeneemt met de vlegsnelheid.
- Grote slankheid heeft dus steeds minder betekenis naarmate de vlegsnelheid groter is.

Oppervlaktevergrotende kleppen (zoals Fowlerflaps) maken het mogelijk langzamer te vliegen, omdat zowel de maximale liftcoëfficiënt als het oppervlak groter wordt door het uitschuiven van de flaps (fig.5.26).
Dit is op zich gunstig bij het stijgen: men kan langzamer door een stijgwindgebied vliegen en er langer profijt van hebben. Een tweede voordeel is dat nauwere bochten gevolgd kunnen worden waardoor dichter bij de kern van de thermiekbel gekomen kan worden. Fowlerflaps hebben echter ook een zeer ongunstig gevolg voor de slankheid en dus voor de geïnduceerde weerstand. Bij zwakke, nauwe thermiek wordt het voordeel van de lage vliegsnelheid teniet gedaan door de grotere daalsnelheid ten gevolge van de toenemende geïnduceerde weerstand. Fowlerflaps hebben daarom alleen zin bij kleine sterke thermiekbellen en verder uiteraard als hulpmiddel om de landingsnelheid te verlagen.

De wens van elke constructeur om de vliegtuigprestaties bij het thermiekvliegen te verbeteren door niet alleen het oppervlak te vergroten, maar ook de slankheid, kan worden gerealiseerd door de vleugel in spanwijdterichting uitschuifbaar te maken. Daardoor wordt bij overgang van steekvlucht naar thermiekvlucht zowel het vleugeloppervlak als de vleugelslankheid vergroot, waardoor de vliegsnelheid kan afnemen de geïnduceerde weerstand (en dus de snelheid) ook. Fig.5.27 laat een driezijdige-aanzicht zien van de fs-29 met telescoopvleugels. Een ontwerp van de Akaflieg Stuttgart.

5.9.5. De vleugelpolaire

Het verband tussen de liftcoëfﬁciënt en de geïnduceerde weerstand is gegeven in verg.5.16. Wordt in een grafiek c_l verticaal uitgezet tegen c_{di} horizontaal dan levert dat een zuivere parabool op (fig.5.28).

Fig.5.27: De fs-29 met telescoopvleugels

Fig.5.28: De geïnduceerde weerstand

Fig.5.29: Profielweerstand+geïnduc.weerst.
Het verband tussen de profielweerstandsoëfficiënt c_{dp} en de liftcoëfficiënt kan eveneens in de dezelfde grafiek getekend worden. De beide weerstandsoëfficiënten moeten uiteraard bij elkaar worden opgeteld om de totale weerstandsoëfficiënt te krijgen. Deze polaire wordt de vleugelpolaire genoemd. In fig.5.30 is tenslotte het verband tussen de vleugelweerstand en de vliegsnelheid weergegeven. Hieruit volgt dat voor één bepaalde vleugelsnelheid een minimum voor de totale vleugelweerstand wordt gevonden.

![Fig.5.30.: De totale weerstand als functie van de vleugelsnelheid](image)

5.10. Vliegtuig

5.10.1. Schadelijke weerstand/interferentieweerstand

Behalve een vleugel heeft het vliegtuig meestal ook een romp (vaak met uitstekende onderdelen zoals kap en wielen) en staartvlakken. Deze "niet-dragende delen" dragen niet of nauwelijks bij aan de liftkracht, maar wel echter aan de weerstand. De weerstand van deze overige delen (naast de vleugel) wordt de schadelijke weerstand genoemd (in het Engels: "parasit drag").

In de praktijk blijkt een vliegtuig een grotere weerstand te hebben dan de som van de weerstanden van elk van de afzonderlijke delen. Dat komt doordat de stroming rondom de afzonderlijke delen elkaar beïnvloed en verstoor. De extra weerstand die hiervan het gevolg is wordt de interferentieweerstand genoemd.

De weerstand van de niet-dragende delen is nauwelijks afhankelijk van de invalshoek. Dat betekent dat de weerstandsoëfficiënt van de niet-dragende delen praktisch constant is.

5.10.2. Het stabilo

Het stabilo (met hoogteroer) levert behalve weerstand, ook een op- of neerwaartse kracht en heeft dus invloed op de totale lift van het vliegtuig. Het doel van het stabilo is om in de stationaire rechtlijnige vlucht te zorgen dat de liftkracht evenwicht maakt met het vliegtuigewicht. Wanneer het aangrijpingspunt van de luchtkrachten samenvalt met het zwaartepunt, hoeft het stabilo geen op- of neerwaartse kracht te leveren. Ook voor het stabilo geldt de liftvergelijking (verg.5.9), dus kan de liftcoëfficiënt van het stabilo c_{ls} gelijk aan nul zijn.

De door het stabilo veroorzaakte weerstand is dan minimaal (mits het stabilo een symmetrisch profiel heeft, hetgeen meestal het geval is). Het is dus gewenst de op- en neerwaartse krachten op het stabilo minimaal te houden. Dit wordt bereikt door een gunstige zwaartepuntligging te kiezen en het vliegtuig een lange hefboom (romplengte) te geven.
Bij zweefvlietuigen wordt aan deze eis goed voldaan. De invloed van het stabilo op de liftkracht is daardoor normaal gesproken verwaarloosbaar. Overigens stelt de stabiliteit ook eisen aan de zwaartepuntligging zoals later uit de doeken zal worden gedaan.

5.10.3. De vliegtuigpolaire

De vleugelpolaire is eenvoudig uit te breiden tot die van het hele vliegtuig omdat c_l voor vleugel en vliegtuig immers vrijwel dezelfde zijn, terwijl voor elke waarde van c_l de c_d een constante waarde opschuift met de term c_d niet-dragend:

Fig.5.31 laat nu de berekende polaire zien van een Astir. Op de momentencoëfficiënt wordt later nog teruggekomen.

5.10.4. De snelheidspolaire

In plaats van de vliegtuigpolaire wordt meestal de snelheidspolaire gebruikt om de prestaties van een zweefvliegtuig weer te geven. In dit diagram wordt verticaal de daalsnelheid uitgezet tegen horizontaal de vliegsnelheid (fig.5.32).

In dit diagram zijn een aantal belangrijke punten te onderscheiden:

1. De minimale of beste glijhoek (maximaal of beste glijgetal)

Door uit de oorsprong een raaklijn aan de polaire te trekken wordt de kleinste glijhoek of het beste glijgetal gevonden. Met dit glijgetal kan in rustige lucht de grootste afstand afgelegd worden. In fig. 5.32 is het beste glijgetal 36,7 bij 103 km/h.

Fig.5.32: Snelheidspolaire
2. De minimale daalsnelheid
Een horizontale raaklijn aan de polaire geeft de minimale daalsnelheid. In fig.5.32 is de minimale daalsnelheid 0,68 m/s bij een vliegsnelheid van 80 km/h. Deze snelheid blijft het vliegtuig het langst inde lucht.

3. De overtreksnelheid
De snelheid waarbij het vliegtuig overtrekt is de verticale raaklijn aan de curve. In de figuur bedragt de overtreksnelheid ongeveer 60 km/h.

Fig.5.33 laat de invloed van het gewicht zien op het verloop van de polaire. Dus bijvoorbeeld het meenemen van water (zie ook § 6.1.5.)

Het nadeel van waterbalast is dat de overtreksnelheid aanzienlijk toeneemt. Ook de minimale daalsnelheid neemt iets toe. Echter het glijgetal wordt beter en het vliegtuig daalt minder bij hogere vliegsnelheden.

Tenslotte laat figuur 5.34 de invloed zien van welvingskleppen op de snelheidspolaire.

Fig.5.34.: De invloed van de welvingskleppen op de snelheidspolaire
5.11. Vragen

1. Hoe luidt de wet van Bernoulli?

2. Wat wordt verstaan onder:
 a. de statische druk?
 b. de stuwdruk
 c. de energiedruk?

3. Hoe is de standaardatmosfeer gedefinieerd?

4. Wat wordt verstaan onder de standaardatmosfeer en geef de waarden en eenheden.

5. Welk verband bestaat er tussen de grootte van de aerodynamische krachten op een vliegtuig, zijn vleegsnellheid, vleugeloppervlak en dichtheid?

6. Wat wordt verstaan onder:
 a. profielwelving?
 b. profielkoorde?
 c. spanwijdte?
 d. vleugelslankheid?

7. a. Wat is de geïnduceerde weerstand?
 b. Hoe verhouden zich geïnduceerde weerstand en slankheid?
 c. Geef twee manieren om de geïnduceerde weerstand te verkleinen.

8. a. Wat is een grenslaag
 b. Wat gebeurt er bij het omslagpunt van een grenslaag?

9. a. Omschrijf het verschil tussen een laminaire stroming en een turbulente stroming.
 b. Wat is het voordeel van een laminaire stroming t.o.v. een turbulente stroming?

10. Waarom wordt doorgaans een vleugel zo gebouwd dat in spanwijderichting naar de tippen toe de instelhoek geleidelijk afneemt?

11. a. Schets een grafiek die het verband aangeeft tussen de invalshoek en de liftcoëfficiënt.
 b. Geef in deze grafiek de situatie aan waarbij één vleugel reeds is overtrokken en de ander bijna.
 c. Hoe reageert het vliegtuig?

12. Schets de luchtstroom rond een profiel voor
 a. $\alpha = 0$
 b. $\alpha = \text{maximaal}$

13. Geef de wet van Bernoulli en noem enkele voorwaarden die gesteld worden in verband met de geldigheid.

14. Geef op een duidelijke schets aan:
 a. invalshoek
 b. welving
c. skeletlijn
d. de lift. Geef de liftformule

15. De aerodynamische eigenschappen (“prestaties”) van een zweefvliegtuig worden veelal aangegeven in een zogenaamd polair diagram.
 a. Schets een polair diagram en geef de bijzondere punten aan.

16. De geïnduceerde weerstand zal relatief laag c.q. hoog zijn bij:
 a. een lange slanke vleugel
 b. een korte dikke vleugel
 c. heeft niet te maken met de vleugelvorm, ja of nee
 d. een dikke lange vleugel

6. Vliegmechanica

In dit hoofdstuk wordt gekeken hoe een vliegtuig zich gedraagt onder invloed van diverse krachten die op dat vliegtuig worden uitgeoefend.

Vliegmechanica bestaat weer uit statica en dynamica. Hier wordt vooral ingegaan op de dynamica van het vliegen omdat de krachten naar grootte en richting kunnen veranderen.

6.1. Rechtlijnige vluchten

6.1.1. Definities van snelheden en hoeken

De meest eenvoudige vliegdynamica is te vinden bij de rechtlijnige vlucht. Voor dat echter naar de optredende krachten gekeken wordt dient eerst nog een aantal snelheden en hoeken gedefinieerd te worden.

De snelheidsdefinities volgen direct uit fig.6.1 (zie ook de symbolenlijst).

\[w = v \cdot \sin \gamma \quad \text{en} \quad v_h = v \cdot \cos \gamma \]
(6.1)

Bij zweefvliegtuigen is \(\gamma \) meestal zeer klein. Voor kleine hoeken geldt:

\[\sin \gamma \approx \gamma \quad \text{en} \quad \cos \gamma \approx 1 \quad \text{en dus ook} \quad \tan \gamma \approx \gamma \]
(6.2)

Hierbij moet \(\gamma \) uitgedrukt worden in radialen (1 radiaal = 360°/(2\cdot\pi) = 57,3°)

Hiervan gebruik makend kan voor de daalsnelheid geschreven worden:

\[w = \gamma \cdot v \quad \text{en} \quad v_h = v \]
(6.3)

Een paar vragen over de rechtlijnige vlucht zijn nu interessant:

1. Waar hangt de kleinste glijhoek c.q. het beste glijgetal vanaf?
2. Welke rol speelt \(c_{f} \) en de vleugelbelasting in de vliegsnelheid?
3. Waar hangt de minimum daalsnelheid vanaf?

Achtereenvolgens zullen deze punten nu de revue passeren.
6.1.2. De glijhoek

Er wordt nu gekeken naar de krachten die optreden bij een rechtlijnige vlucht en met constante snelheid. In een dergelijke vlucht zullen alle optredende krachten met elkaar in evenwicht zijn. De luchtkracht \(F \) kan onttbonden worden in een liftkracht \(L \) loodrecht op de vliegrichting en de weerstandskracht \(D \) in de vliegrichting (fig.6.2).

Als er evenwicht is geldt:

\[
D = G \cdot \sin \gamma \quad \text{ofwel} \quad D = G \cdot \gamma \quad (6.4)
\]

en

\[
L = G \cdot \cos \gamma \quad \text{ofwel} \quad L = G \cdot \gamma \quad (6.5)
\]

Hieruit volgt:

\[
\gamma = \frac{D}{L} \quad (6.6)
\]

De glijhoek is dus gelijk aan de verhouding tussen \(c_d \) en \(c_l \). Deze verhouding kan direct uit de vliegpolaire worden bepaald door het betreffende punt op de polaire de waarde van \(c_d \) (horizontaal) te delen door de bijbehorende waarde van \(c_l \) (verticaal). De verhouding is het kleinst voor het raakpunt van de rechte lijn vanuit de oorsprong de raakt aan de polaire.

Let wel op dat de glijhoek niet direct kan worden opgemeten uit de figuur omdat de schaal van de assen niet hetzelfde is. Hierdoor lijkt groter.

\[
\gamma = \frac{c_d \cdot \frac{1}{2} \cdot \rho \cdot v^2 \cdot A}{c_l \cdot \frac{1}{2} \cdot \rho \cdot v^2 \cdot A} = \frac{c_d}{c_l} \quad (6.7)
\]

Fig. 6.2.: Het krachtenevenwicht tijdens rechtlijnige vlucht

Voor \(D \) en \(L \) kunnen de verg.2.11 en 2.12 ingevuld worden:

\[
\gamma = \frac{c_d}{c_l} \quad (6.7)
\]
Voor de beste glijhoek in de figuur 6.3 geldt:

$$\left(\frac{c_d}{c_l} \right)_{\text{min}} = \frac{0.06}{0.98} = 0,06 \text{rad.} = 3,5^\circ$$

In plaats van de glijhoek wordt vaak het glijgetal ε gebruikt. Het glijgetal is het omgekeerde van de glijhoek.

Officieel: het glijgetal is gelijk aan de reciproke waarde van de glijhoek.

$$\varepsilon = \frac{1}{\gamma} = \frac{0.98}{0.06} = 16,3$$

In het bovenstaande voorbeeld is het beste glijgetal dus 16,3. (Geen al te best zweefvliegtuig dus!!). Dit betekend dus dat een vliegtuig vanaf een hoogte van 1 km (1000 m) 16,3 km ver kan komen (uiteraard in rustige lucht!). Moderne zweefvliegtuigen halen een glijgetal dat tot in de buurt van 65 kan liggen.

6.1.3. **De invloed van c_l en van de vleugelbelasting op de vliegsnelheid**

Uit het krachtenevenwicht op het zweefvliegtuig in verticale richting volgt (zie fig.6.2):

$$G = F \text{ en } L = G \cos \gamma$$

In normale stationaire glijvlucht is γ erg klein, zodat $\cos \gamma \approx 1$.

Dan geldt dus:

$$G = L = c_l \cdot \frac{1}{2} \cdot \rho \cdot v^2 \cdot A$$

Hieruit kan de vliegsnelheid worden opgelost:

$$v = \sqrt{\frac{G}{A} \cdot \frac{2}{\rho} \cdot \frac{1}{c_l}}$$

Van de grootheden in deze vergelijking kan het volgende gezegd worden voor één bepaald zweefvliegtuig:

1. Het vleugeloppervlak A ligt vast (geen verandering van het vleugeloppervlak door bijvoorbeeld fowlerflaps)
2. Het gewicht G is afhankelijk van de belading maar ligt tijdens de vlucht vast
3. De soortelijke massa van de lucht is geen vliegtuigvariabele. Bovendien speelt de variatie van de dichtheid bij het gewone overlandvliegen geen grote rol (bij bergvliegen kan de dichtheid wel degelijk een grote rol spelen).

De snelheid is dus gelijk aan:

$$v = \text{const.} \cdot \frac{1}{\sqrt{c_l}}$$

In de vorige paragraaf is aangetoond dat het beste glijgetal behoort bij de kleinste c_d/c_l-verhouding. Stel dat deze optreedt bij een liftcoëfficiënt c_{l1} dan hoort daar een vliegsnelheid v_i bij van:

$$v_i = \sqrt{\frac{G \cdot 2}{A \cdot \rho} \cdot \frac{1}{c_{l1}}}$$

Hieruit blijkt dat de snelheid bij de beste glijhoek groter is naarmate de vleugelbelasting G/A groter is. Steken moet snel plaatsvinden. Daarom moet de vleugelbelasting groter zijn; dus moet het gewicht groter zijn.

Van de andere kant wordt de minimale snelheid van het vliegtuig bereikt bij maximale liftcoëfficiënt:
\[v_{\text{min}} = \sqrt[3]{\frac{2A}{G} \cdot \frac{1}{\rho c_{l_{\text{max}}}}} \]

(6.12)

\(v_{\text{min}} \) is echter óók groter naarmate \(G/A \) groter is, en een hogere minimum snelheid heeft weer negatieve invloed op de stijgprestaties in de thermiek.

Het is dus kiezen of delen:
- bij sterke thermiek het gewicht vergroten door waterballast mee te nemen met als gevolg dat de minimum snelheid hoger komt te liggen waardoor slechtere stijgprestaties (meer tijd voor stijgen, minder tijd voor steken) óf
- minder waterballast waardoor betere stijgprestaties en er meer tijd nodig om te steken.

Intermezzo III

6.1.4. De kleinste daalsnelheid

De minimum daalsnelheid, die eigenlijk alleen belangrijk is om zo lang mogelijk boven te blijven, kan berekend worden met verg.6.1 en 6.9.

Verg.6.1 stelt:

\[w = v \cdot \sin \gamma \]

(6.13)

voor kleine hoeken kan met voldoende nauwkeurigheid geschreven worden

\[\sin \gamma = \tan \gamma \]

(6.14)

Zodat:

\[w = v \cdot \tan \gamma = v \cdot \frac{c_d}{c_l} \]

Verg.3.9 hierin levert:

\[w = \sqrt{\frac{G}{A} \cdot 2 \cdot \frac{1}{\rho} \cdot \frac{c_d}{c_l}} = \sqrt{\frac{G}{A} \cdot \frac{c_d^2}{c_l^2}} \]

(6.15)

Uit deze vergelijking volgt dat de minimale daalsnelheid afhangt van de term \(c_l^3/c_d^2 \). Deze factor wordt het stijggetal genoemd. De minimale daalsnelheid wordt bereikt als \(c_l^3/c_d^2 \) maximaal is. Dit treedt op bij een iets hogere waarde van \(c_l \) (dus bij een iets lagere vleugelsnelheid) dan die bij het beste glijgetal (zie fig.5.20 punt D).

6.1.5. De rechtlijnige glijvlucht polaire

Met behulp van de vliegtuigpolaire (die het verband tussen \(c_d \) en \(c_l \) aangeeft) en de formules voor de vleugelsnelheid en daalsnelheid:

\[v = \sqrt{\frac{G}{A} \cdot \frac{2}{\rho} \cdot \frac{1}{c_l}} \]

\[w = v \cdot \tan \gamma = v \cdot \frac{c_d}{c_l} \]

(6.16)

kan voor elk vliegtuig voor een bepaalde vleugelbelasting \(G/A \) het verband tussen de vleugelsnelheid en de daalsnelheid worden weergegeven (fig.6.4). Dit wordt de glijvlucht polaire (ook wel snelheidspolaire) van het vliegtuig genoemd.

In fig.6.4 zijn een twee glijvluchtpolaires getekend één voor een hogere en één voor een lagere vleugelbelasting. Als eenheid van vleugelbelasting is hier aangegeven daN/m². De reden van deze merkwaardige eenheid is dat het overeenkomt met kg/m² uit het oude stelsel.

Wat opvalt is dat de glijpolaire voor een hogere vleugelbelasting vlakker verloopt dan voor een lagere vleugelbelasting. Bij 200 km/h bedraagt de daalsnelheid bij lage \(G/A \) maar 2 m/s en bij hoge \(G/A \) maar 1,1 m/s.

De raaklijn aan de polaire geeft de minimum daalhoek aan, ofwel de beste glijhoek. In de figuur heeft de vleugelbelasting kennelijk nauwelijks invloed op de beste glijhoek, terwijl de minimum daalsnelheid maar zeer weinig is toegenomen bij een grotere \(G/A \). De vleugelsnelheid bij de minimum daalsnelheid is echter wel duidelijk toegenomen.

Een grotere vleugelbelasting heeft dus de grootste invloed op het vlieggedrag bij hogere vleugelsnelheden.
6.1.6 De sleepvlucht

Tot nu toe is de zweefvlucht behandeld. Hierin maakt het gewicht van het vliegtuig evenwicht met de luchtkrachten.

Fig. 6.5: De sleepvlucht

In de sleepvlucht trekt de kabel vrijwel in de vliegrichting met de kracht T (fig.6.5). In twee richtingen kan het krachtenevenwicht opgeschreven worden:

In vliegrichting:

$$T = D + G \cdot \sin \gamma$$

Loodrecht op de vliegrichting:

$$L = G \cdot \cos \gamma$$

Voor kleine hoeken van γ kan geschreven worden $\sin \gamma \approx \gamma$ en $\cos \gamma \approx 1$. Daarmee is dan bij benadering:

$$L = G \quad \text{en} \quad T = D + G \cdot \gamma$$

Wanneer in deze vergelijkingen nog de definities van de lift- en weerstandscoëfficiënt worden ingevuld kan de trekkkracht worden uitgedrukt in het gewicht en de coëfficiënten:

$$T = \left(\frac{c_d}{c_l} + \gamma \right) \cdot G$$

Uit deze vergelijking volgt dus dat het minimale sleepvermogen nodig is bij de vliegvliegsnelheid met de kleinste glijhoek. Gevoelsmatig is dat ook logisch!
6.2. Krachten tijdens de lierstart

Tijdens de lierstart komt, naast de reeds bekende krachten, de vrij grote kabelkracht er nog bij (fig.6.6). De kabelkracht is aanzienlijk groter dan de trekkkracht tijdens een sleepvlucht omdat niet alleen de weerstand overwonnen moet worden, maar ook nog een aanzienlijk gedeelte van de draagkracht. Bovendien moet ook nog het eigen gewicht van de kabel worden gedragen. Naarmate er steiler wordt gestart en het vliegtuig dus een grotere standhoek heeft, wordt de door de kabelkracht te overwinnen component van de draagkracht groter. Daarom neemt de kans op kabelbreuk toe bij steiler starten. In fig.6.7 is het krachtenevenwicht tijdens één moment van het lieren getekend. T is de trekkkracht in de kabel. Deze werkt op het vliegtuig. De resulterende krachten F en H zijn even groot en tegengesteld gericht waardoor zij in evenwicht zijn. F is weer de resulterende van L en D, terwijl H de resulterende is van het gewicht G en de trekkkracht T.

![Fig.6.6.: De lierstart](image)

L is aanmerkelijk groter dan G vanwege de verticale componenten van de trekkkracht T en de weerstand D. Hieruit volgt dat door het vergroten van de standhoek (harder trekken aan de knuppel) de weerstand D en de liftkracht L naar achteren kantelen en toenemen. Dit betekent dat ook de kabelkracht T sterk toeneemt. Ook is in te zien dat als het vliegtuig hoger komt, en de kabelkracht T meer naar beneden gericht is, de benodigde liftkracht groter moet worden. Naarmate het vliegtuig verder klimt moet er dus harder aan de knuppel worden getrokken. De noodzaak daartoe wordt nog versterkt doordat de lierhaak altijd vóór het zwaartepunt van het vliegtuig is geplaatst, waardoor met het klimmen ook het door de kabelkracht veroorzaakte neuslastige moment om het zwaartepunt toeneemt. Dit moet worden gecompenseerd door een even sterk toenemend staartlastig moment door uitslag van het hoogteroer (trekken).

6.3. Bocht

6.3.1. Het krachtenevenwicht in de horizontale bocht

Fig.6.7 laat de krachten zien die werken op het vliegtuig in een stationaire horizontale bocht. De hoek tussen de verticaal en de top-as van het vliegtuig wordt de dwarshefning genoemd. De vleugelsnelheid staat loodrecht op het vlak van tekening. Zowel horizontaal als verticaal is er een krachtenevenwicht omdat verondersteld wordt dat in de bocht de vleugelsnelheid constant is. In verticale richting geldt dus:

\[G = L \cdot \cos \phi \quad \text{of} \quad L = \frac{G}{\cos \phi} \quad (6.21) \]

Omdat \(\cos \phi < 1 \) zal de lift in een bocht groter moeten zijn dan het gewicht van het vliegtuig. Deze grotere lift wordt verkregen door een grotere invalshoek van de vleugel. In een bocht moet dus aan de stuurbeknuppel getrokken worden om de extra lift te krijgen.
Verder is er nog een horizontale component \(L \sin \phi \). Deze kracht, die naar het middelpunt gericht is (centripetale kracht) geeft het vliegtuig een versnelling loodrecht op de momentane vliegrichting in de richting van het bochtcentrum. Hierdoor zal het vliegtuig een cirkelvormige baan om dit bochtcentrum beschrijven.

6.3.2. De minimum snelheid in de bochtvlucht

Vanwege het krachtelevenwicht in de bocht geldt verg.6.21. Voorts geldt nog de definitie van de liftcoëfficiënt (verg.5.9).

Combinatie van beide vergelijkingen en de snelheid eruit oplossen levert:

\[
v_b = \frac{G \cdot 2 \cdot 1 \cdot 1}{A \cdot \rho \cdot c_l \cdot \cos \phi}
\]

(6.22)

De snelheid is laag als de liftcoëfficiënt \(c_l \) maximaal is.

\(c_{l_{\text{max}}} \) is voor een bepaalde vleugel een vast gegeven. Bij een bepaalde vleugelbelasting \(G/A \) geldt dus:

\[
v_{\text{min}} = \frac{\text{const}}{\sqrt{\cos \phi}}
\]

(6.23)

Naarmate de helling \(\phi \) groter wordt, daalt de waarde van \(\cos \phi \). \(v_{\text{min}} \) wordt dus groter.

Bij een dwarslengte van 60 is \(\cos 60 = 1/2 \) en dus is de minimum vliegsnelheid \(2 = 1,4 \) maal zo groot als in rechtlijnige vlucht. Als \(v_{\text{min}} = 70 \text{ km/h} \) is in rechtlijnige vlucht, dan neemt \(v_{\text{min}} \) toe tot \(60 \times 1,4 = 98 \) km/h in een 60-bocht.

6.3.4. De afvangbeweging

De afvangbeweging (fig.6.8) bestaat uit een bocht in het verticale vlak. Dit kan alleen als de liftkracht \(L \) groter is dan de component van het gewicht welke loodrecht staat op de baan. Het "overschot" van de liftkracht (\(L - G \cos \gamma \)) zorgt voor de naar boven gerichte versnelling die de verticale kromming van de afvangboog veroorzaakt.

De component van het gewicht, welke evenwijdig ligt aan de baan, maakt evenwicht met de weerstand. Tijdens de naderingsvlucht (een rechtlijnige vlucht) is er aanvankelijk wel verticaal krachtelevenwicht, dus dan is \(G \cos \gamma = L \). Om de boog te kunnen inzetten moet \(L \) groter worden. Dit wordt bereikt door \(c_l \) groter te maken, dus door de invalshoek te vergroten. Dit gebeurt door aan de knuppel te trekken.

Als tijdens de naderingsvlucht met \(c_{l_{\text{max}}} \) gevlogen wordt (dat wil zeggen met de minimum vliegsnelheid) dan kan \(c_l \) niet meer vergroot worden. De afvangboog kan dan niet meer gemaakt worden. Wordt dat alsnog geprobeerd dan zal het vliegtuig overtrekken waardoor het gaat doorzakken. In plaats van minder steil wordt de baan steiler en de klap dus harder.
6.3.5. Het "uitmelken"

Omdat, ten gevolge van de kromming van de afvangboog, de baanhoek steeds kleiner wordt en tenslotte nul wordt aan het einde van de afvangboog, neemt de voorwaarts gerichte kracht $G \cdot \sin \gamma$, die in de stationaire glijvlucht de weerstand D compenseert, ook steeds verder af. De vertragende weerstand D krijgt daardoor de overhand, met als gevolg dat de snelheid afneemt. Om bij deze steeds lagere snelheid toch te kunnen blijven vliegen, met andere woorden voldoende draagkracht L te kunnen opwekken, is de vergroting van c_l nodig, dus een vergroting van de invalshoek van de vleugel.

Met andere woorden, tijdens de afvangboog en ook tijdens de daarop volgende horizontale vlucht vlak boven de grond, dient de stuurknuppel steeds verder naar achteren te worden getrokken, bij steeds afnemende snelheid. Dit wordt het *uitmelken* genoemd.

Dit levert het volgende beeld op (fig.6.9):

Tijdens de horizontale vlucht is $L = G$ en de daalsnelheid $w = 0$. D maakt geen evenwicht met een andere kracht en werkt dus vertragend op de vliegsnelheid.

In de vergelijking:

$$G = L = c_l \cdot \frac{1}{2} \cdot \rho \cdot v^2 \cdot A$$ \hspace{1cm} (6.27)

wordt v kleiner waardoor c_l groter moet worden (bij halvering van de snelheid moet c_l 4x zo groot worden!). De invalshoek moet dus continu vergroot worden. Er moet dus steeds meer getrokken worden aan de stuurknuppel.

6.3.6. De belastingsfactor

In een horizontale bocht, met dwarshelling, maakt de vertikaal onttbondene van de liftkracht L evenwicht met het gewicht van het vliegtuig (fig.6.10):

$$G = L \cdot \cos \theta$$
De horizontaal ontbondene van de liftkracht, \(L \cdot \sin \phi \), ondervindt geen tegenwerking van een op het vliegtuig werkende kracht en zal het vliegtuig daarom in de richting van het middelpunt willen versnellen zoals boven reeds uit de doeken is gedaan.

Het vliegtuig bezit echter massa (traagheid) en deze verzet zich tegen deze zijwaartse versnelling. Anders gezegd: deze zijwaartse liftkracht \(L \cdot \sin \phi \) roept een tegengesteld gerichte massastraagheidskracht \(F_T \) op die precies evenwicht maakt met \(L \cdot \sin \phi \), zolang het vliegtuig deze zijwaartse versnelling ondergaat. Dus \(F_T = L \cdot \sin \phi \).

Omdat deze naar de buitenkant van de bocht gerichte kracht, die daarom wel de “middelpuntvliedende kracht” wordt genoemd, alleen bestaat zolang het vliegtuig zijwaarts wordt versneld, en dus niet zelfstandig als kracht kan bestaan, spreekt men wel van een geïnduceerde kracht.

In zijn algemeenheid geldt dat steeds wanneer een voorwerp (of liever “massa”) wordt versneld (maar ook vertraagd = negatieve versnelling), de versnellende krachten worden tegengewerkt door even grote massastraagheidskrachten.

\[F_T = L \cdot \sin \phi \]

In fig.6.10 is te zien dat de kracht \(F_T \) en \(G \) samen resulteren in de kracht \(N \) die in het symmetrievlak van het vliegtuig naar beneden gericht werkt. Dit schijnbare gewicht \(N \) heeft de grootte \(G / \cos \gamma \) en is dus groter dan \(G \) naarmate de dwarshelling groter is.

Bij een dwarshelling van \(\phi = 60^\circ \) is \(\cos \phi = 1/2 \), dus \(N = 2G \).

Gevoelsmatig is de piloot in een 60\(^\circ\)-bocht tweemaal zo zwaar als normaal. Het vliegtuig moet dus ook een tweemaal zo grote lift leveren.

Voor het gewicht geldt: \(G = m \cdot g \).
Hierin is de massa \(m \) constant (voor zover de belading niet verandert).
Wanneer nu het schijnbare gewicht tweemaal zo groot is, betekent dit dat de versnelling tweemaal zo groot is als in de horizontale vlucht. De, bij een dwarshelling van 60\(^\circ\), op het vliegtuig werkende versnelling bedraagt blijkbaar dus 2g. Hier komt de uitdrukking "een 2g-bocht" vandaan. De, in zuivere bochten optredende, belastingen werken in principe symmetrisch op de vliegtuigconstructie. Ze worden door het symmetrisch werkende hoogteroer geregeld.

Hetzelfde geldt voor optrekbewegingen.
De heftigheid en dus de op het vliegtuig werkende versnelling kan worden uitgedrukt in het aantal g's dat "getrokken" wordt.

De belasting van het vliegtuig wordt veelal aangegeven met de belastingsfactor \(n \). Als \(n=2 \) wordt bedoeld dat de liftkracht tweemaal zo groot is als het gewicht en dat is bepalend voor de inwendige krachten in de constructie.

Als de extra belastingen op het vliegtuig het gevolg zijn van stuwbewegingen door de vlieger (roeruitslagen en klepuitslagen) spreekt men van manoeuvreerbelastingen. Deze manoeuvreerbelastingen werken meestal asymmetrisch op de vliegtuigconstructie.

Wanneer met een zweefvliegtuig een vlucht wordt uitgevoerd in onrustige lucht, dan kan door het optreden van remousstoten de invalshoek worden veranderd. Bij normale snelle remousstoten zal het vliegtuig immers veel te traag zijn om direct het effect daarvan te corrigeren. Het kan voorkomen dat bijvoorbeeld bij vertaalslagen en omhooggerichte luchtestoten plotseling een veel grotere liftkracht optreedt dan nodig is om het vliegtuiggegewicht te dragen.

De belasting op het vliegtuig als gevolg van deze remousstoten wordt de remousbelasting genoemd. Ook deze wordt uitgedrukt in de belastingsfactor \(n \), die aangeeft hoeveel maal groter de liftkracht daarbij is geworden ten opzichte van de normaal benodigde liftkracht, dat wil zeggen het gewicht \(G \) van het vliegtuig.

\[F_T = L \cdot \sin \phi \]

\[N = 2G \]

\[G = m \cdot g \]

\[n = \frac{\text{Belasting}}{\text{Gewicht}} \]
Bij een eenvoudige rechtlijnige vlucht maakt het gewicht evenwicht met de liftkracht. Neemt door een remoussstoet de waarde c_l bij dezelfde snelheid toe tot $c_{l_{\text{max}}}$, dan geldt:

$$L_{\text{remous}} = c_{l_{\text{max}}} \cdot \frac{1}{2} \rho \cdot v^2 \cdot A$$

(6.28)

De belastingsfactor is daarmee:

$$n = \frac{L_{\text{remous}}}{L} = \frac{c_{l_{\text{max}}}}{c_l}$$

(6.29)

Voor de lift kan ook geschreven worden:

$$L = c_l \cdot \frac{1}{2} \rho \cdot v^2 \cdot A = c_{l_{\text{max}}} \cdot \frac{1}{2} \rho \cdot v_{\text{min}}^2 \cdot A$$

(6.30)

Daarmee gaat vergelijking 6.29 over in:

$$n = \frac{c_{l_{\text{max}}}}{c_l} = \frac{v^2}{v_{\text{min}}^2} = \left(\frac{v}{v_{\text{min}}}\right)^2$$

(6.31)

Het belastingdiagram waarin de belastingsfactor n wordt uitgezet tegen de vliegsnelheid v wordt het $V-n$-diagram genoemd (fig.6.11).

Voor de normale eenvoudige rechtlijnige vlucht in rustige lucht is de belastingsfactor $n = 1$. Dit wordt in het $V-n$-diagram voorgesteld door een horizontale lijn op de hoogte $n = 1$ boven de horizontale as. Voor een gegeven waarde van de minimumsnelheid (v_{min}) neemt de belastingsfactor n kwadratisch toe met de vliegsnelheid. De lijn van 0 naar A, resp van 0 naar G is dus een parabool.

De minimale en snelheden zijn in het diagram aangegeven door de parabolisch gekromde lijnen vanuit de oorsprong naar boven (A) voor de normale vlucht en vanuit de oorsprong naar beneden (G) voor vluchten met negatieve belastingen (zoals rugvluchten).

De maximaal toegelaten vliegsnelheid v_{NE} wordt in het $V-n$-diagram bepaald door de vertikaal $D-E$. De snelheid in punt A is de manoeuvreersnelheid v_A. Dit is de maximale snelheid waarbij volle roeruitslagen gegeven mogen worden. De snelheid in punt D en E is v_{NE}, de snelheid die niet overschreden mag worden (Never Exceed).

Behalve de $V-n$-curve zelf worden hier ook de maximaal toelaatbare waarden van n aangegeven die het zweefvliegtuig structureel moet kunnen doorstaan (zonder blijvende vervorming).

![Fig.6.11: Het V-n-diagram](image)

De verschillende maximale waarden van n voor de luchtwaardigheidscategorieën Utility en Aerobatic zijn weergegeven in onderstaande tabel:
6.4. Stabiliteit

6.4.1. Wat is stabiliteit

Een lichaam verkeert in stabiel evenwicht als bij een verstoring uit dat evenwicht de neiging bestaat vanzelf weer naar de evenwichtstoestand terug te keren.

Een evenwicht is indifferent als na een verstoring een nieuwe andere evenwichtstoestand ontstaat.

Een onstabiel evenwicht wil zeggen dat bij een verstoring van de evenwichtstoestand de neiging bestaat dat de verstoring groter wordt (geen nieuwe evenwichtstoestand).

Voorbeelden (fig. 6.12):

- Een knikker in een kom verkeert in stabiel evenwicht. Na verstoring rollt hij weer terug.
- Een knikker op een vlakke plaat is in indifferent evenwicht.
- Een knikker op een bol vlak is in onstabiel evenwicht.

Fig. 6.12: Stabiliteit

6.4.2. Statistische en dynamische stabiliteit

Bij een bewegend vliegtuig kan een statische stabiliteit en een dynamische stabiliteit onderscheiden worden.

Een vliegtuig is statisch stabiel als de oorspronkelijke evenwichtstoestand van het vliegtuig, na een verstoring zonder ingrijpen van de bestuurder, weer wordt bereikt.

Dit kan alleen maar als ten gevolge van de standsverandering ten opzichte van de stroming een aerodynamisch moment ontstaat, dat het vliegtuig dwingt de oorspronkelijke stand weer in te nemen.

Anders gezegd: een standsverandering roept een tegenwerkende kracht op. Als dit zo is dan is het vliegtuig statisch stabiel.

De dynamische stabiliteit eist dat bovendien de resulterende bewegingsvorm gedempt is. Fig. 6.13 toont het verschil tussen dynamisch stabiel (aperiodisch gedempt (a), periodisch gedempt (b)) en dynamisch instabiel (aperiodisch (c) en periodisch (d)) gedrag.

Als een vliegtuig niet statisch stabiel is kan het niet dynamisch stabiel zijn.

Statistische stabiliteit op zich is echter geen garantie voor dynamische stabiliteit, omdat - doordat het vliegtuig standsveranderingen ondergaat (beweegt om een bepaalde as) - ook krachten kunnen ontstaan.

Fig. 6.13.: Dynamisch stabiele en dynamisch instabiele bewegingsvorm
6.4.3. Het assenstelsel

Tot nu toe zijn de luchtkrachten ontbonden in het stromingsassenstelsel: één component L loodrecht op de stroming en de andere component D in stromingsrichting.

De stabiliteit is beter te bestuderen wanneer deze wordt bekeken ten opzichte van een assenstelsel dat vast verbonden is met het vliegtuig: het vliegtuigassenstelsel.

De oorsprong van dit assenstelsel ligt in het zwaartepunt van het vliegtuig \((cg = center of gravity)\) (fig.6.14).

De X-as (de langs-as) is een gekozen as naar voren in het symmetrievlak van het vliegtuig, bijvoorbeeld evenwijdig aan de cabinevloer, de symmetrielijn van de romp of de vleugelkooiende.

De hoek tussen de stromingsrichting en de X-as is de invalshoek \(\alpha\).

De Y-as (de dwars-as) staat loodrecht op het symmetrievlak en wijst naar rechts.

De Z-as (de top-as) ligt in het symmetrievlak loodrecht op de X-as.

De totale luchtkracht \(F\) wordt ontbonden in \(F_z\) naar boven langs de top-as, loodrecht op de X-as) \(F_x\) (naar achteren, evenwijdig aan de X-as).

Een moment om de X-as (langsas) noemt men een rolmoment. Het is positief als het, gezien in de richting van de positieve X-as, rechtsom draait (rechter vleugel omlaag).

Een moment om de Y-as (dwarsas) noemt men een duikmoment. Het is positief als het, gezien in de richting van de positieve Y-as, rechtsom draait (vliegtuigneus omhoog).

Een moment om de Z-as (topas) noemt men een giermoment. Het is positief als het, gezien in de richting van de positieve Z-as, rechtsom draait (vliegtuig draait linksom).

Voor het gemak zal echter de oude benaming "lift" en "weerstand" gebruikt worden. Dat is bij kleine invalshoeken toelaatbaar omdat dan de verschillen tussen \(L\) en \(F_z\), en \(D\) en \(F_x\) klein zijn.

6.4.4. Langsstabiliteit

De belangrijkste vorm van stabiliteit in de langsrichting is de langsstabiliteit. De langsstabiliteit zal dan ook uitvoerig aan de orde komen waarbij de bijdrage van de vleugel en van het stabilo apart bekeken wordt. Allereerst echter wordt het krachten- en momentenevenwicht behandeld en aerodynamische grootheden die daarbij een belangrijke rol spelen.

6.4.4.1. Het krachten- en momentenevenwicht

In de evenwichtstoestand moet de som van alle luchtkrachten precies gelijk zijn aan het gewicht, én het duikmoment \(M_z\) om het zwaartepunt gelijk zijn aan nul (fig.6.15).

Wordt nu het evenwicht verstoord, door bijvoorbeeld een remousstoot, dan ontstaat om het zwaartepunt een duikmoment dat het vliegtuig \(\delta\) verder uit het evenwicht brengt (instabiliteit) \(\delta\) werkt in de richting van het herstel van het krachtenevenwicht (stabiliteit). Welke vorm optreedt hangt af van het verloop van het duikmoment en daarmee de duik-momentencoëfficiënt (fig.6.16).

Neemt met toenemende liftcoëfficiënt \(\Delta c_l\) de duikmomentencoëfficiënt \(\Delta c_m\) toe \((\Delta c_l/\Delta c_m > 0)\) dan zal bij een optredende verstoring die de invalshoek en daarmee de liftcoëfficiënt vergroot een positief, dus staartlastig moment optreden die het vliegtuig verder uit zijn evenwicht brengt. Het vliegtuig is dan instabiel.
Neemt daarentegen de duikmomentencoefficiënt af met toenemende liftcoefficiënt dan is het vliegtuig stabiel. Het vliegtuig is in evenwicht in punt A. Het heeft immers lift nodig om te kunnen vliegen en het duikmoment moet gelijk zijn aan nul. Het punt A is slechts dán mogelijk bij een positieve liftcoefficiënt als de duikmomentenlijn een positief nulmoment \(c_{Mo} \) heeft. Het nulmoment is het moment dat optreedt als de lift gelijk is aan nul.

Voor een statisch langsstabiel evenwicht moet dus voldaan zijn aan de twee volgende voorwaarden:

\[
\frac{\Delta c_m}{\Delta c_l} < 0 \quad \text{en} \quad c_{Mo} > 0
\]

De vleugel zelf heeft, bij een positieve profielwelving, steeds een negatief nulmoment en kan daarom een evenwichtstoestand niet bereiken. Door het toevoegen van een stabilo is dit wel mogelijk. Bij vliegende vleugels onttrekt het stabilo. De langsstabilitéit wordt hier verkregen door het profiel aan de achterkant omhoog te buigen (S-slag profiel).

Fig.6.17 laat de krachten zien die op het gehele zweefvliegtuig werken. Voor zweefvliegtuigen wordt geprobeerd het zwaartepunt zo dicht mogelijk bij het drukpunt van de vleugel te houden omdat dan het stabilo voor het momentenevenwicht niet veel hoeft te doen. Hoe minder het stabilo hoeft bij te dragen, des te lager de totale weerstand. Als het zwaartepunt vóór het drukpunt van de vleugel komt te liggen, moet het stabilo zelfs een negatieve draagkracht leveren.

Dit heeft een dubbel negatief effect op de totale weerstand: enerzijds de weerstand van het stabilo zelf, anderzijds moet de vleugel meer lift gaan leveren om de negatieve bijdrage van het stabilo te compenseren. Deze extra lift levert de vleugel ten koste van extra eigen weerstand.

Voor het krachtenevenwicht geldt in X-richting:

\[
G \cdot \sin \theta = F_x + F_{xs}
\]

en in Y-richting:

\[
G \cdot \cos \theta = F_z + F_{zs}
\]

Voor het momentenevenwicht (om center of gravity) geldt bij benadering:

\[
F_z \cdot x_w - F_{zs} \cdot x_h = 0 \quad \Rightarrow \quad F_z \cdot x_w = F_{zs} \cdot x_h
\]

Hierbij wordt de bijdrage van de momenten veroorzaakt door de krachten \(F_z \) en \(F_{zs} \) verwaarloosd omdat de verticale afstanden tot het c.g. zeer klein zijn.
6.4.4.2. De bijdrage van de vleugel
Tengevolge van het drukverschil tussen de onderkant en de bovenkant van de vleugel ontstaat een resulterende kracht R. De grootte ervan wordt bepaald door de invalshoek α (fig.6.18).
Als de invalshoek groter wordt met een toename $\Delta \alpha$ neemt R toe met ΔR en loopt tevens naar voren. De nieuwe resulterende kracht is dan $R + \Delta R$. In de oude situatie is, ten opzichte van elk punt van de werklijn van R, het moment gelijk aan nul.
In de nieuwe situatie is ten opzichte van elk punt van de werklijn van $R + \Delta R$ het moment eveneens gelijk aan nul.
Ten opzichte van het snijpunt van de werklijnen geldt dat in beide situaties het moment gelijk aan nul is. Het parallellogram van krachten kan nu geconstrueerd worden. De werklijn van ΔR wordt de neutrale lijn genoemd omdat ten opzichte van alle punten op deze lijn door ΔR geen moment ontstaat.
Het snijpunt van de neutrale lijn met de koorde van het profiel wordt het neutrale punt genoemd.
Het moment ten opzichte van het neutrale punt verandert niet bij een kleine invalshoekverandering. Wanneer dezelfde redenering gevolgd wordt, uitgaande van een andere invalshoek, wordt een nieuwe neutrale lijn en een nieuw neutraal punt verkregen.

In de praktijk blijkt dat bij verschillende invalshoeken de neutrale lijnen elkaar en de koorde allen op ongeveer dezelfde plaats snijden mits de stroming niet heeft losgelaten. Dit punt wordt het aerodynamisch centrum genoemd.
Ten opzicht van het aerodynamisch centrum is, bij verschillende invalshoeken, het moment constant. De daar geldende momentencoëfficiënt wordt c_{mac} genoemd. De veranderingen van luchtkrachten grijpen in het aerodynamisch centrum (a.c.) aan.
Het a.c. blijkt voor de meeste profielen op ongeveer 1/4 van de koorde, gerekend vanaf de neus van het profiel, te liggen.
Het moment in het a.c. (M_{a}) is over het algemeen negatief d.w.z. vooroverdraaiend. Een vleugelig draait altijd om zijn zwaartepunt. Bij invalshoekvergroting (achterover draaien) wordt c_{l} groter. De toename van de liftcoëfficiënt c_{l} grijpt aan in het a.c. en wil de vleugel voorover doen draaien als het draaipunt (= zwaartepunt) vóór het a.c. ligt.
Dus: een vleugel is stabiel als het zwaartepunt vóór het a.c. ligt, en instabiel als het zwaartepunt achter het a.c. ligt. Hoe verder het zwaartepunt naar voren ligt, des te stabiler het evenwicht.
Hoe verder het zwaartepunt naar achter ligt, des te minder stabilie de situatie is. Als het zwaartepunt voorbij het a.c. naar achter schuift, wordt het evenwicht onstabiel; bij verder schuiven onstabilier.

6.4.4.3. De bijdrage van het stabilo

Voor normale vleugels heeft c_{mac} een vooroverdraaiend effect, wat wil zeggen dat de resulterende luchtkracht achter het a.c. aangrijpt. Als het vanwege de stabiliteit gewenst is om het zwaartepunt vóór het a.c. te leggen, kan de zwaartekracht geen momentenevenwicht maken met de luchtkrachten. Er blijft dan een niet-gecompenseerd vooroverdraaiend moment t.o.v. het zwaartepunt over.

Om momentenevenwicht te maken is een stabilo nodig. Wanneer de staartboom lang is, is een kleine neerwaartse kracht op het stabilo voldoende voor dit evenwicht. Lift op het stabilo levert ook een weerstand. De totale weerstand is minimaal wanneer het stabilo geen bijdrage hoeft te leveren aan het momentenevenwicht, met andere woorden als het zwaartepunt in de werklijn van de resulterende luchtkrachten ligt. Dit pleit voor een achter het a.c., in het drukpunt gelegen zwaartepunt. Dan is echter het evenwicht onstabiel. Het weerhaaneffect van een stabilo helpt echter een handje. Het stabilo ligt ver achter het zwaartepunt, dus de lifttoename aldaar bij invalshoekvergroting werkt stabiliserend. Als het product van staartboomlengte en stabilo-oppervlak groot genoeg is, kan dit een instabiele bijdrage van de vleugel overwinnen, zodat het vliegtuig per saldo statisch stabiel is. Normale zweefvliegtuigen zijn zo ontworpen.

De combinatie van vleugel en stabilo bestaat een punt ten opzichte waarvan het moment van de lift van vleugel en stabilo vrijwel constant is en waarbij ten gevolge van de invalshoekverandering de veranderende luchtkracht aangrijpt. Dit punt heet het *neutrale punt van het vliegtuig* (fig.6.19).

6.4.4.4. Conclusies

1. Een vliegtuig is statisch langsstabiel als het zwaartepunt vóór het neutrale punt van het vliegtuig ligt.

2. De afstand tussen de achterste zwaartepuntligging en het neutrale punt wordt bepaald door de wens om voldoende stabiliteitmarge te hebben. De voorste zwaartepuntligging wordt bepaald door de wens het vliegtuig bij alle toegestane snelheden te kunnen besturen. Het moment om het zwaartepunt al functie van de invalshoek kan in een grafiek worden weergegeven. Voor normale zweefvliegtuigen ligt het zwaartepunt in de buurt van het drukpunt van de vleugel, dus achter het a.c. van de vleugel zelf. De vleugel zelf is dan instabiel. Het verband tussen c_m en de invalshoek α kan grafisch weergegeven worden (fig.6.20) en wordt de *momentenlijn* genoemd. Bij één invalshoek ligt het drukpunt in het zwaartepunt, daar is $c_m = 0$. Voor invalshoeken tussen bijvoorbeeld -5 en +15 is het verband tussen c_m en α lineair (fig.6.20a).

Het totale vliegtuig is stabiel als bij vergroting van α het moment afneemt (fig.6.20c). De momentbijdrage van het stabilo moet dus zodanig zijn dat wanneer deze bij die van de vleugel wordt opgeteld fig.6.20c ontstaat. De helling voor de stabilolijn moet dus steiler zijn dan en tegengesteld aan die voor de vleugel.
De steilheid van de stabilolijn wordt bepaald door het product van het horizontale staartvlakoppervlak en de staartboomlengte ("het staartvlakvolume").

Fig.6.20b is de lijn voor het stabilo. Bij deze beschouwing is er van uitgegaan dat het hoogteroer wordt vastgehouden ("stick fixed") in de middenstand en dat bij $\alpha = 5^\circ$ het zwaartepunt in het drukpunt ligt; het stabilo draagt dan bij die invalshoek aan het momentenevenwicht niets bij.

3. Als het zwaartepunt naar achteren schuift neemt de helling van zowel de momentenlijn van het stabilo als die van het gehele vliegtuig af; de stabiliteit dus eveneens. Bovendien wordt de invalshoek waarbij evenwicht optreedt $c_m = 0$ steeds groter. Als het zwaartepunt nog verder naar achter schuift komt het in het neutrale punt aan; de lijn loopt dan horizontaal (fig.6.21). Vliegen daarmee zou alleen kunnen als door trimmen deze lijn omlaag wordt gebracht tot op de $c_m = 0$-lijn. Door hoogteroeruitslag te geven of te trimmen schuift de $c_m - \alpha$-lijn evenwijdig naar boven (hoogteroer omhoog) of naar beneden (hoogteroer omlaag).

Bij verdergaande verschuiving van het zwaartepunt naar achteren wordt het vliegtuig instabiel: de helling van de lijn slaat om. Bij groter wordende invalshoek is de verandering van het moment dan positief dus achteroverdraaiend.

6.4.5. Richtingsstabiliteit

Als het vliegtuig ten gevolge van een verstoring (bijvoorbeeld een uitslag van het richtingsroer) een draaiing om de topas maakt, dan treedt er ook een draaiing om de lengteas (rollbeweging) en om de dwarsas (stammbeweging) op. Deze bewegingen zijn gekoppeld en Cheryl gelijktijdig op.

De naar voren draaiende vleugel zal een snelheidsverhoging ondergaan en genereert daardoor meer lift, maar ook meer weerstand. Voor de andere vleugel die naar voren draait geldt het omgekeerde. De optredende asymmetrische weerstandsverandering zorgt voor een terugdraaiend, dus stabiliserend moment om de topas. Ook het "weerhaan-effect" van de verticale staartvlakken werkt stabiliserend (Aangenomen wordt dat het richtingsroer (weer) in de neutrale stand staat).

Fig.6.21.: De invloed van de zwaartepuntligging
De asymmetrische verandering van de draagkracht veroorzaakt een rolmoment om de lengteas. Daardoor rolt het vliegtuig en werkt de lift niet meer in verticale richting. De liftkracht krijgt dan een component in het horizontale vlak, die het vliegtuig zijwaarts doet slippen. Door deze zijwaartse slipbeweging ontstaat er op de romp en de verticale staartvlakken een eveneens terugdraaiend, dus stabiliserend giermoment; het slip-gier-moment. Dit stabiliserende slip-gier-moment draait het vliegtuig in de richting van de zijwaartse bewegingscomponent, zodat deze nul wordt. Voor een stabiele slip is het daarom noodzakelijk om door middel van richtingsroeruitslag, tegen de sliprichting in, het slip-gier-moment te compenseren.

Ook de pijlstand van de vleugel heeft invloed op de richtingstabiliteit. Veronderstel dat een vliegtuig met achterwaarts gepijlde vleugels gaat gieren (fig.6.24). Daarbij treden de rees eerder beschreven effecten van liftverandering en verandering van de geïnduceerde weerstand op. Bij de naar voren draaiende pijlvenugelhelft zal de spanwijde (gemeten dwars op de stromingsrichting) daardoor echter toenemen, waardoor het resulterende aangrijpingspunt van de weerstand van deze vleugel verder van het symmetrievlak (zwaartepunt van het vliegtuig) komt te liggen. Bij de andere, naar achter draaiende pijlvenugelhelft treedt het omgekeerde effect op. Deze effecten resulteren in een extra terugdraaiend giermoment bij pijlvenugels.

Er bestaan ook vliegtuigen met negatieve pijlstand (Ka-7 en Ka-13). Afgezien van een geringe gunstige invloed op de overtrekigenschappen heeft dit geen aerodynamische voordelen. De reden dat negatieve pijlstand wordt toegepast is dan ook alleen van constructieve aard. Door de negatieve pijlstand kan namelijk het drukpunt en het zwaartepunt naar voren worden gebracht ten opzichte van de plaats waar de vleugelhoofdligger noodzakelijkwijze de romp moet passeren. Dit kan vooral van belang zijn bij tweeuzitters, die ook solo gevlogen moeten kunnen worden.
Deze vliegtuigen worden zo geconstrueerd dat het zwaartepunt samenvalt met de achterste zitplaats, terwijl zich deze toch vóór de hoofdligger bevindt (fig.6.25). De aanwezigheid van een passagier op deze zitplaats beïnvloedt dan de zwaartepunktligging niet meer.

6.4.6 Rolstabiliteit

Een vliegtuig is rolstabil als het na een verstoring om de langsas weer uit zichzelf naar de oorspronkelijke stand terugkeert.

Rolstabiliteit wordt onder meer verkregen door V-stelling van de vleugels.

Ten aanzien van de V-stelling geldt het volgende:

Veronderstel dat het vliegtuig door een verstoring om de langsas de stand aanneemt zoals in fig.6.26. De resultante van de draagkracht L en het gewicht G is dan de kracht R. Deze kracht doet het vliegtuig zijdelings wegslippen met een slipsnelheid v_s. Het weerstandsoppervlak van de bovenste vleugel ten opzichte van deze dwarsstroming is groter dan dat bij de onderste vleugel. Hierdoor ontstaat een terugdraaiend rolmoment.

Let wel, dit is het gevolg van het zijwaarts slippens van het vliegtuig. Verder zorgen de vleugels er voor dat elke rolbeweging wordt tegengewerkt en tot stilstand wordt gebracht.

Het vliegtuig in fig.6.27 wordt door een remous linksom gedraaid. Het evenwicht is stabiel als een moment rechtsom ontstaat.

Door het draaien om de langsas wordt de voorwaartse snelheid om de vleugels aangevuld met een verticale component die aan de tip het grootst is. Daardoor treedt bij de linkervleugel een invalshoekvergroting op en dus een vergroting van de liftkracht. Rechts is het precies andersom. Door het verschil in liftkracht op beide vleugels ontstaat een tegenwerkend rolmoment(fig.6.28).
Let wel, dit is het gevolg van het rollen.
Het is van belang te constateren dat dit effect niet optreedt bij zeer grote invalshoeken. Dan kan de neergaande vleugel de kritieke invalshoek α_{krit} worden overschreden, waardoor deze overtrekt en de lift grotendeels wegvalt.
Dit treedt op bij een vrille (overtrokken tolvlucht).

7. Bepalen van het zwaartepunt

In vorig hoofdstuk is de stabiliteit uitvoerig aan de orde gekomen. Gevonden is daar dat het zwaartepunt uitermate belangrijk is voor de stabiliteit. Een de voorlijk zwaartepunt heeft tot gevolg dat de uitslag van het hoogteroer naar boven niet toereikend is om het vliegtuig in de lucht te houden; een te achterlijk zwaartepunt is nog veel gevaarlijker en betekent dat het vliegtuig niet meer bestuurbaar is. Bij een te achterlijk zwaartepunt maakt het vliegtuig een aperiodische vlucht (fig.6.14 d) waarbij de uitslag steeds groter wordt en onherroepelijk in een crash eindigt; het vliegtuig is dus niet bestuurbaar meer.
Het is daarom uitermate belangrijk dat de zweefvliegetechicus staat is om het zwaartepunt te bepalen van een vliegtuig (onder leiding van een EZT-er) en daarmee te controleren of de ligging van het zwaartepunt in overeenstemming is met de voorschriften van de fabrikant.
De berekening van de ligging van het zwaartepunt volgt uit de momentenstelling aan het vliegtuig.
Deze stelling zegt:

De som van de momenten om een bepaald punt is gelijk aan nul.

7.1. Bepalen van het zwaartepunt zonder inzittende

Het zwaartepunt wordt gemeten door het vliegtuig op twee plaatsen te ondersteunen en aldaar het gewicht te bepalen.
Het zweefvliegtuig wordt opgesteld volgens voorschriften van de fabrikant. Meestal is dat de stand van de gemiddelde reissnelheid. Bij sommige vliegtuigen wordt de onderkant van een vleugelrib als referentie genomen; deze moet dan precies horizontaal staan. Tegenwoordig wordt vaak door de fabrikant aangegeven dat de romprug een bepaalde hoek met de horizontale lijn moet hebben. Er moet dan een schabloon gemaakt worden voor op de romprug (bijvoorbeeld een schabloon van 100 : 3). In deze stand wordt dan het zwaartepunt bepaald.
De ligging van het zwaartepunt wordt bepaald zonder piloot maar voor de rest in vliegklare vorm dus met alles wat aanwezig is in de inventarislijst. Het is daarom ook van belang dat de inventarislijst klopt met wat er werkelijk in de cockpit aanwezig is. De fabrikant geeft aan of de parachute meegewogen moet worden. Vaak is dat niet het geval.

Fig. 7.1. toont twee manieren om het zwaartepunt te bepalen. Aangenomen wordt dat een rechtsdraaiend moment (met de wijzers van de klok mee) positief en een links draaiend moment negatief gerekend wordt. De meetbasis MB is in beide figuren de vleugelvoornrand.

In fig. 7.1.a wordt het zwaartepunt bepaald door het gewicht op de neus en op de staart te meten. De momentenstelling toegepast om GI leveren:

\[
G_1(a+x) - G_2b = 0
\]

Hieruit is dan de waarde van x te berekenen:

\[
G_1(a+x) = G_2b
\]

\[
G_1a + G_1x = G_2b - G_1a
\]

\[
x = \frac{G_2b - G_1a}{G_1}
\]

(7.1)

waarbij nog geldt dat \(G = G_1 + G_2 \).

De berekening van de zwaartepuntligging in fig.7.1.b verloopt op dezelfde manier. Hier wordt het vliegtuig op het hoofdwiel en op de staart gemeten. De momentenstelling toegepast om GI leveren:

\[
+G_1(x-a) - G_2b = 0
\]

Hieruit is direct de waarde van x te berekenen:

\[
x = \frac{G_2b + G_1a}{G_1}
\]

(7.2)

waarbij eveneens geldt dat \(G = G_1 + G_2 \).

Is de waarde van x bekend dan wordt in het vlieghandboek de ligging van het zwaartepunt vergeleken met de ligging van de maximale voorste en achterste zwaartepuntsligging berekend door de fabrikant. Als voorbeeld wordt de zwaartepuntsbepaling van een tweezitter genomen (Puchacz). Fig.71.a wordt in dit geval toegepast, dus formule 7.1.

Tijdens de weging en meting zijn de volgende waarden gevonden:

<table>
<thead>
<tr>
<th></th>
<th>Leeggewicht</th>
<th>Gew. niet-dragende delen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vleugel rechts</td>
<td>86,55</td>
<td></td>
</tr>
<tr>
<td>Vleugel links</td>
<td>85,40</td>
<td></td>
</tr>
<tr>
<td>Romp</td>
<td>181,70</td>
<td>181,70</td>
</tr>
<tr>
<td>Stabilo</td>
<td>21,0</td>
<td>21,0</td>
</tr>
<tr>
<td>Totaal</td>
<td>374,65</td>
<td>202,70</td>
</tr>
</tbody>
</table>

Het maximale gewicht van de inzittende is belangrijk voor de ligging van het zwaartepunt kan op twee manieren worden bepaald:

1. het verschil van het maximaal toelaatbare gewicht (opgegeven door de fabrikant) verminderd met het gewicht van het toestel
2. het verschil van het maximum gewicht van de niet-dragende delen (romp+stabilo) (eventueens opgegeven door de fabrikant) en het gewicht van de niet-dragende delen.

Het minimum van een van beiden is dan maatgevend. Verder is door de fabrikant opgegeven maximaal toegelaten gewicht: 570 kg en maximaal toegelaten gewicht van de niet dragende delen: 375,7 kg.

Hieruit kan het maximale gewicht van beide inzittenden berekend worden:

\[
G_{max} = 570 - 374,65 = 195,35 \text{ kg}
\]

en uit de gewichten van de niet-dragende delen:
De maximale last $G_{\text{max}} = 375,7 - 201,7 = 173$ kg

Dit laatste gewicht is maatgevend!

Afstand $a = 174,5$ cm; $b = 638,5$ cm; $G_1 = 237,05$ kg; $G_2 = 137,59$ (zie fig. 7.1a)

Hieruit is $G = G_1 + G_2 = 374,65$ kg.

Met formule 7.1 kan nu de zwaartepuntsligging berekend worden:

$$x = \frac{G_2 \cdot b}{G} - \frac{a}{G} = \frac{137.59 \times 638.5}{374.65} - 174.5 = 60.0 \text{ cm}$$

Fig. 7.2 geeft de zwaartepuntsligging in lege toestand (de fabrikant geeft als extra op dat dit diagram geldt zonder ballastgewichten).

Bij een gewicht van het toestel met de inhoud van de inventarislijst van 375 kg moet het zwaartepunt liggen tussen de grenzen 60,5 en 63,5 cm gemeten vanaf de meetbasis. De meetbasis is de vleugelvoorrand bij de romp.

Wordt extra instrumentarium in het vliegtuig gemonteerd dan kan steeds met behulp van de momentenstelling berekend worden of het zwaartepunt nog in het door de fabrikant voorgeschreven bereik valt.

Boven is gevonden een waarde van $x = 60,0$ cm. Het zwaartepunt ligt dus voor het voorste zwaartepunt dat de fabrikant voorschrijft.

Er kunnen nu twee dingen gedaan worden:

1. Een zodanig gewicht achter het zwaartepunt aanbrengen dat het binnen de juiste grensen komt te liggen
2. Als de juiste plaats van de beide inzittenden bekend zijn en de het zwaartepunt tijdens de vlucht gegeven is door de fabrikant, dan kan ook nagegaan worden of de voorelijke ligging verantwoord is.

Dit laatste zal hier nu onderzocht worden.

7.2. Bepalen van het zwaartepunt met inzittende

Hier wordt als voorbeeld weer de Puchacz genomen. Dit voorbeeld is genomen omdat er twee inzittenden zijn en de achterste inzittende zit voor het zwaartepunt.

De fabrikant van het toestel geeft de volgende afstanden op van het vliegtuig:

In figuur 7.3 is:

- $P_1 =$ gewicht voorste inzittende [kg] = variabel (zie tabel)
- $P_2 =$ gewicht achterste inzittende [kg] = variabel (zie tabel)
- $G = 375$ [kg] volgens meting (exclusief ballastgewichten)
- $a_1 =$ afstand zwaartepunt P_1 tot referentiepunt = 1,35 [m] met rugkussen (zie handboek)
- $a_2 =$ afstand zwaartepunt P_1 tot referentiepunt = 0,269 [m] met rugkussen (volgens vlieghandboek)
- $a_3 =$ afstand ballastgewichten tot referentiepunt = 1,79 m,

Fig. 7.3.: Afstanden van inzittenden tot zwaartepunt
x = afstand ZWP tijdens vlucht
voorste ligging 0,092 [m]; achterste ligging 0,333 [m] volgens handboek
b = gemeten statisch zwaartepunt = 0,6001 [m] (zie boven)
b = ballastgewichten = 12,6 kg volgens fabriek

Uit deze gegevens volgt dat de achterste inzittende voor het zwaartepunt zit.
Er kan nu berekend worden wat het minimum gewicht moet zijn van de voorste inzittende indien er solo gevlogen wordt.

Dit volgt uit de momentenstelling om de meetbasis:

\[P_1 \cdot (a_1 + x) = G \cdot (b - x) \]

Hieruit volgt \(P_1 \):

\[
P_1 = \frac{G \cdot (b - x)}{(a_1 + x)} = \frac{375 \cdot (0,60 - 0,333)}{(1,35 + 0,333)} = 59,5 \text{ kg}
\]

Hieruit volgt dat iemand met 55 kg niet solo mag vliegen, vandaar de ballastgewichten.
Met ballastgewichten vermindert het minimale gewicht van de piloot.

\[
P_1 = \frac{(G + P_b) \cdot (b - x) - P_b \cdot (a_3 + x)}{(a_1 + x)}
\]

Getallen ingevuld levert:
\(P_1 = 45,6 \text{ kg met rugkussen} \)

Op dezelfde manier kan ook voor de solist het maximum gewicht berekend worden waarbij uiteraard het voorste ZWP tijdens de vlucht genomen moet worden:

\[
P_1 = \frac{G \cdot (b - x)}{(a_1 + x)} = \frac{375 \cdot (0,60 - 0,092)}{(1,35 + 0,092)} = 132 \text{ kg}
\]

Dezelfde exercitie kan ook gedaan worden met een tweede inzittende aan boord.
Uit veiligheidsoverweging schrijft de fabrikant een maximum gewicht voor van 110 kg.
Onverlet blijft hierbij dat het totale gewicht van beide inzittenden de 173 niet te boven mag gaan!

8. Vragen

1. Er zijn drie soorten statische stabiliteit.
 • a. Welke zijn deze?
 • b. Hoe heet de stabilité om de langsas, de topas en de dwarsas?
 • c. Hoe is deze stabilité, om de drie assen, verkregen?

2. De zwaartepuntligging van een zweefvliegtuig bepaalt men met twee bascules. Bascule 1 is geplaatst op 12 cm achter de referentielijn en geeft een gewicht aan van 2 10 kg. Bascule 2 bevindt zich op een afstand van 420 cm van bascule 1 en geeft een gewicht aan van 30 kg. Bepaal de ligging van het zwaartepunt t.o.v. de referentielijn.

3. Waarom is de inventarislijst voor het weeg- en zwaartepuntrapport van belang?

4. Een zweefvliegtuig weegt 2500 N en heeft t.o.v. de referentielijn een moment van 750 Nm. De referentielijn loopt langs de voorkant van de vleugel nabij de wortel. Er wordt 96 cm. voor de referentielijn een VHF-zendontvanger ingebouwd die 20 N weegt.
5. Hoeveel bedraagt de verschuiving van het zwaartepunt?

6. Heeft de ligging van het zwaartepunt van een vliegtuig invloed op de stabiliteit? Verklaar uw antwoord.

7. Schets het manoeuvreerdigram van een categorie A zweefvliegtuig en geef hierin aan de belangrijke grooteden.

8. Wat verstaat men onder aerodynamisch gebalanceerde roeren?

9. Van een zweefvliegtuig zijn de onderstaande gegevens bekend:
 - rechter vleugel: 78,6 kg
 - linker vleugel: 79,3 kg
 - romp: 129,2 kg
 - horizontaal staartvlak: 11 kg
 - vleugelstijlen: 11 kg
 - maximum toegelaten gewicht van de niet dragende delen: 260 kg
 - maximum toegelaten gewicht van de niet dragende delen: 525 kg

 Hoe groot mag het gewicht van de vlieger zijn na inbouw van een zender/ontvanger in het instrumentenbord en een accu 25 cm achter de vleugelvoorrand?

 Gewicht zender/ontvanger: 5,1 kg
 Gewicht accu: 4,3 kg

10. Wat wordt verstaan onder:
 a. een belastingsfactor
 b. een veiligheidsfactor

11. Verklaar waarom een zweefvliegtuig een stabilo nodig heeft om statische stabiliteit te verkrijgen.

12. Stel dat bij een last van 200 N de lastarm 30 cm en de krachtarm 150 cm is. Bereken de daarbij behorende kracht om evenwicht te verkrijgen.

13. Wat verstaat men onder de “slankheid” van een vleugel?
 Verklaar met behulp van vleugelpolaires (verband tussen \(c_l \) en \(c_D \)) de invloed van de slankheid op de prestaties van een zweefvliegtuig.

14. Wat wordt verstaan onder statische en dynamische langsstabiliteit van een vliegtuig?

15. Toon aan met behulp van een formule dat een zweefvliegtuig bij een plotselinge knuppeluitslag naar achteren bij een lage snelheid niet en bij een hoge snelheid wel overbelast kan worden.

16. Schets de krachten die optreden tijdens een lierstart

17. Waarom is een inventarislijst voor het weeg- en zwaartepuntrapport van belang?

18. Een kunststof eenzitter (DG800S) wordt gewogen door middel van twee weegschalen. Een onder het hoofdwielen en een onder de staartsluif. De weegschaal onder het hoofdwielen geeft 244 kg aan, onder de staartsluif 28 kg. De weegschaal onder het hoofdwielen staat 100 mm achter de vleugelneus en de staartsluifweegschaal bevindt zich 4580 mm achter de vleugelneus. Bepaal de ligging van het zwaartepunt t.o.v. de vleugelneus in deze configuratie.

19. Stel de momentenstelling op voor het voorbeeld van de Puchacz met twee inzittenden.

========